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SUMMARY

Single-cell RNA sequencing (scRNA-seq) offers new
possibilities to address biological and medical ques-
tions. However, systematic comparisons of the per-
formance of diverse scRNA-seq protocols are lack-
ing. We generated data from 583 mouse embryonic
stem cells to evaluate six prominent scRNA-seq
methods: CEL-seq2, Drop-seq, MARS-seq, SCRB-
seq, Smart-seq, and Smart-seq2. While Smart-seq2
detected the most genes per cell and across cells,
CEL-seq2, Drop-seq, MARS-seq, and SCRB-seq
quantified mRNA levels with less amplification noise
due to the use of unique molecular identifiers (UMIs).
Power simulations at different sequencing depths
showed that Drop-seq is more cost-efficient for tran-
scriptome quantification of large numbers of cells,
while MARS-seq, SCRB-seq, and Smart-seq2 are
more efficient when analyzing fewer cells. Our quan-
titative comparison offers the basis for an informed
choice among six prominent scRNA-seq methods,
and it provides a framework for benchmarking
further improvements of scRNA-seq protocols.

INTRODUCTION

Genome-wide quantification of mRNA transcripts is highly infor-

mative for characterizing cellular states and molecular circuitries

(ENCODE Project Consortium, 2012). Ideally, such data are

collected with high spatial resolution, and single-cell RNA

sequencing (scRNA-seq) now allows for transcriptome-wide an-

alyses of individual cells, revealing exciting biological and med-

ical insights (Kolodziejczyk et al., 2015a; Wagner et al., 2016).

scRNA-seq requires the isolation and lysis of single cells, the

conversion of their RNA into cDNA, and the amplification of

cDNA to generate high-throughput sequencing libraries. As the
Mole
amount of starting material is so small, this process results in

substantial technical variation (Kolodziejczyk et al., 2015a; Wag-

ner et al., 2016).

One type of technical variable is the sensitivity of a scRNA-

seq method (i.e., the probability to capture and convert a

particular mRNA transcript present in a single cell into a

cDNA molecule present in the library). Another variable of in-

terest is the accuracy (i.e., how well the read quantification

corresponds to the actual concentration of mRNAs), and a

third type is the precision with which this amplification occurs

(i.e., the technical variation of the quantification). The combi-

nation of sensitivity, precision, and number of cells analyzed

determines the power to detect relative differences in expres-

sion levels. Finally, the monetary cost to reach a desired level

of power is of high practical relevance. To make a well-

informed choice among available scRNA-seq methods, it is

important to quantify these parameters comparably. Some

strengths and weaknesses of different methods are already

known. For example, it has previously been shown that

scRNA-seq conducted in the small volumes available in the

automated microfluidic platform from Fluidigm (C1 platform)

outperforms CEL-seq2, Smart-seq, or other commercially

available kits in microliter volumes (Hashimshony et al.,

2016; Wu et al., 2014). Furthermore, the Smart-seq protocol

has been optimized for sensitivity, more even full-length

coverage, accuracy, and cost (Picelli et al., 2013), and this

improved Smart-seq2 protocol (Picelli et al., 2014b) has also

become widely used (Gokce et al., 2016; Reinius et al.,

2016; Tirosh et al., 2016).

Other protocols have sacrificed full-length coverage in order

to sequence part of the primer used for cDNA generation. This

enables early barcoding of libraries (i.e., the incorporation of

cell-specific barcodes), allowing for multiplexing the cDNA

amplification and thereby increasing the throughput of scRNA-

seq library generation by one to three orders of magnitude

(Hashimshony et al., 2012; Jaitin et al., 2014; Klein et al., 2015;

Macosko et al., 2015; Soumillon et al., 2014). Additionally, this

approach allows the incorporation of unique molecular identi-

fiers (UMIs), random nucleotide sequences that tag individual
cular Cell 65, 631–643, February 16, 2017 ª 2017 Elsevier Inc. 631

mailto:enard@bio.lmu.de
http://dx.doi.org/10.1016/j.molcel.2017.01.023
http://crossmark.crossref.org/dialog/?doi=10.1016/j.molcel.2017.01.023&domain=pdf


Figure 1. Schematic Overview of the Experimental and Computational Workflow

Mouse embryonic stem cells (mESCs) cultured in 2i/LIF and ERCC spike-in RNAs were used to generate single-cell RNA-seq data with six different library

preparation methods (CEL-seq2/C1, Drop-seq, MARS-seq, SCRB-seq, Smart-seq/C1, and Smart-seq2). The methods differ in the usage of unique molecular

identifier (UMI) sequences, which allow the discrimination between reads derived from original mRNA molecules and duplicates generated during cDNA

amplification. Data processing was identical across methods, and the given cell numbers per method and replicate were used to compare sensitivity, accuracy,

precision, power, and cost efficiency. The six scRNA-seq methods are denoted by color throughout the figures of this study as follows: purple, CEL-seq2/C1;

orange, Drop-seq; brown, MARS-seq; green, SCRB-seq; blue, Smart-seq; and yellow, Smart-seq2. See also Figures S1 and S2.
mRNA molecules and, hence, allow for the distinction between

original molecules and amplification duplicates that derive from

the cDNA or library amplification (Kivioja et al., 2011). Utilization

of UMI information improves quantification of mRNA molecules

(Gr€un et al., 2014; Islam et al., 2014), and it has been imple-

mented in several scRNA-seq protocols, such as STRT (Islam

et al., 2014), CEL-seq (Gr€un et al., 2014; Hashimshony et al.,

2016), CEL-seq2 (Hashimshony et al., 2016), Drop-seq (Ma-

cosko et al., 2015), inDrop (Klein et al., 2015), MARS-seq (Jaitin

et al., 2014), and SCRB-seq (Soumillon et al., 2014).

However, a thorough and systematic comparison of relevant

parameters across scRNA-seq methods is still lacking. To

address this issue, we generated 583 scRNA-seq libraries from

mouse embryonic stem cells (mESCs), using six different

methods in two replicates, and we compared their sensitivity,

accuracy, precision, power, and efficiency (Figure 1).
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RESULTS

Generation of scRNA-Seq Libraries
Variation in gene expression as observed among single cells is

caused by biological and technical variation (Kolodziejczyk

et al., 2015a; Wagner et al., 2016). We used mESCs cultured

under two inhibitor/leukemia inhibitory factor (2i/LIF) condi-

tions to obtain a relatively homogeneous cell population

(Gr€un et al., 2014; Kolodziejczyk et al., 2015b), so that biolog-

ical variation was similar among experiments and, hence, we

mainly compared technical variation. In addition, we spiked

in 92 poly-adenylated synthetic RNA transcripts of known con-

centration designed by the External RNA Control Consortium

(ERCCs) (Jiang et al., 2011). For all six tested scRNA-seq

methods (Figure 2), we generated libraries in two independent

replicates.



Figure 2. Schematic Overview of Library Preparation Steps

For details, see the text. See also Table S1.
For each replicate of the Smart-seq protocol, we performed

one run on the C1 platform from Fluidigm (Smart-seq/C1) using

microfluidic chips that automatically capture up to 96 cells (Wu

et al., 2014). We imaged captured cells, added lysis buffer

together with the ERCCs, and we used the commercially avail-

able Smart-seq kit (Clontech) to generate full-length double-

stranded cDNA that we converted into 96 sequencing libraries

by tagmentation (Nextera, Illumina).

For each replicate of the Smart-seq2 protocol, we sorted

mESCs by fluorescence activated cell sorting (FACS) into

96-well PCR plates containing lysis buffer and the ERCCs. We

generated cDNA as described (Picelli et al., 2013, 2014b), and

we used an in-house-produced Tn5 transposase (Picelli et al.,

2014a) to generate 96 libraries by tagmentation. While Smart-

Seq/C1 and Smart-seq2 are very similar protocols that generate

full-length libraries, they differ in how cells are isolated, their re-

action volume, and in that the Smart-seq2 chemistry has been

systematically optimized (Picelli et al., 2013, 2014b). The main

disadvantage of both Smart-seq protocols is that the generation

of full-length cDNA libraries precludes an early barcoding step

and the incorporation of UMIs.

For each replicate of the SCRB-seq protocol (Soumillon et al.,

2014), we also sorted mESCs by FACS into 96-well PCR plates
containing lysis buffer and the ERCCs. Similar to the Smart-

seq protocols, cDNA was generated by oligo-dT priming,

template switching, and PCR amplification of full-length cDNA.

However, the oligo-dT primers contained well-specific (i.e.,

cell-specific) barcodes and UMIs. Hence, cDNA from one plate

could be pooled and then converted into sequencing libraries,

using a modified tagmentation approach that enriches for the

30 ends. SCRB-seq is optimized for small volumes and few

handling steps.

The fourth method evaluated was Drop-seq, a recently devel-

opedmicrodroplet-based approach (Macosko et al., 2015). Here

a flow of beads suspended in lysis buffer and a flow of a single-

cell suspension were brought together in a microfluidic chip that

generated nanoliter-sized emulsion droplets. On each bead,

oligo-dT primers carrying a UMI and a unique, bead-specific bar-

code were covalently bound. Cells were lysed within these drop-

lets, their mRNAbound to the oligo-dT-carrying beads, and, after

breaking the droplets, cDNA and library generation was per-

formed for all cells in parallel in one single tube. The ratio of

beads to cells (20:1) ensured that the vast majority of beads

had either no cell or one cell in its droplet. Hence, similar to

SCRB-seq, each cDNA molecule was labeled with a bead-spe-

cific (i.e., cell-specific) barcode and a UMI. We confirmed that
Molecular Cell 65, 631–643, February 16, 2017 633



the Drop-seq protocol worked well in our setup bymixing mouse

and human T cells, as recommended by Macosko et al. (2015)

(Figure S1A). The main advantage of the protocol is that a high

number of scRNA-seq libraries can be generated at low cost.

One disadvantage of Drop-seq is that the simultaneous inclusion

of ERCC spike-ins is quite expensive, as their addition would

generate cDNA from ERCCs also in beads that have zero cells

and thus would double the sequencing costs. As a proxy for

the missing ERCC data, we used a published dataset (Macosko

et al., 2015), where ERCC spike-ins were sequenced using the

Drop-seq method without single-cell transcriptomes.

As a fifth method we chose CEL-seq2 (Hashimshony et al.,

2016), an improved version of the original CEL-seq (Hashimsh-

ony et al., 2012) protocol, as implemented for microfluidic chips

on Fluidigm’s C1 (Hashimshony et al., 2016). As for Smart-seq/

C1, this allowed us to capture 96 cells in two independent repli-

cates and to include ERCCs in the cell lysis step. Similar to Drop-

seq and SCRB-seq, cDNA was tagged with barcodes and UMIs;

but, in contrast to the four PCR-based methods described

above, CEL-seq2 relies on linear amplification by in vitro tran-

scription after the initial reverse transcription. The amplified, bar-

coded RNAs were harvested from the chip, pooled, fragmented,

and reverse transcribed to obtain sequencing libraries.

MARS-seq, the sixth method evaluated, is a high-throughput

implementation of the original CEL-seq method (Jaitin et al.,

2014). In this protocol, cells were sorted by FACS in 384-well

plates containing lysis buffer and the ERCCs. As in CEL-seq

and CEL-seq2, amplified RNA with barcodes and UMIs were

generated by in vitro transcription, but libraries were prepared

on a liquid-handling platform. An overview of the methods and

their workflows is provided in Figure 2 and in Table S1.

Processing of scRNA-Seq Data
For each method, we generated at least 48 libraries per replicate

and sequenced between 241 and 866million reads (Figure 1; Fig-

ure S1B). All data were processed identically, with cDNA reads

clipped to 45bpandmapped usingSpliced TranscriptsAlignment

to a Reference (STAR) (Dobin et al., 2013) and UMIs quantified

using the Drop-seq pipeline (Macosko et al., 2015). To adjust for

differences in sequencing depths, we selected all libraries with

at least one million reads, and we downsampled them to one

million reads each. This resulted in 96, 79, 73, 93, 162, and 187 li-

braries for CEL-seq2/C1, Drop-seq, MARS-seq, SCRB-seq,

Smart-seq/C1, and Smart-seq2, respectively.

To exclude doublets (libraries generated from two or more

cells) in the Smart-seq/C1 data, we analyzed microscope im-

ages and identified 16 reaction chambers with multiple cells.

For the four UMI methods, we calculated the number of UMIs

per library, and we found that libraries that have more than twice

themean total UMI count can be readily identified (Figure S1C). It

is unclear whether these libraries were generated from two sepa-

rate cells (doublets) or, for example, from one large cell before

mitosis. However, for the purpose of this method comparison,

we removed these three to nine libraries. To filter out low-quality

libraries, we used a method that exploits the fact that transcript

detection and abundance in low-quality libraries correlate poorly

with high-quality libraries as well as with other low-quality li-

braries (Petropoulos et al., 2016). Therefore, we determined
634 Molecular Cell 65, 631–643, February 16, 2017
the maximum Spearman correlation coefficient for each cell

in all-to-all comparisons that allowed us to identify low-quality

libraries as outliers of the distributions of correlation coefficients

by visual inspection (Figure S1D). This filtering led to the

removal of 21, 0, 4, 0, 16, and 30 cells for CEL-seq2/C1, Drop-

seq, MARS-seq, SCRB-seq, Smart-seq/C1, and Smart-seq2,

respectively.

In summary, we processed and filtered our data so that we

ended up with a total of 583 high-quality scRNA-seq libraries

that could be used for a fair comparison of the sensitivity, accu-

racy, precision, power, and efficiency of the methods.

Single-Cell Libraries Are Sequenced to a Reasonable
Level of Saturation at One Million Reads
For all six methods, >50% of the reads could be unambiguously

mapped to the mouse genome (Figure 3A), which is comparable

to previous results (Jaitin et al., 2014; Wu et al., 2014). Overall,

between 48% (Smart-seq2) and 30% (Smart-seq/C1) of all reads

were exonic and, thus, were used to quantify gene expression

levels. However, the UMI data showed that only 14%, 5%,

7%, and 15% of the exonic reads were derived from indepen-

dent mRNA molecules for CEL-seq2/C1, Drop-seq, MARS-

seq, and SCRB-seq, respectively (Figure 3A). To quantify the

relationship between the number of detected genes or mRNA

molecules and the number of reads in more detail, we down-

sampled reads to varying depths, and we estimated to what

extent libraries were sequenced to saturation (Figure S2). The

number of unique mRNA molecules plateaued at 56,760 UMIs

per library for CEL-seq2/C1 and 26,210 UMIs per library for

MARS-seq, was still marginally increasing at 17,210 UMIs per li-

brary for Drop-seq, and was considerably increasing at

49,980 UMIs per library for SCRB-seq (Figure S2C). Notably,

CEL-seq2/C1 and MARS-seq showed a steeper slope at low

sequencing depths than both Drop-seq and SCRB-seq, poten-

tially due to a less biased amplification by in vitro transcription.

Hence, among the UMI methods, CEL-seq2/C1 and SCRB-seq

libraries had the highest complexity of mRNA molecules, and

this complexity was sequenced to a reasonable level of satura-

tion with one million reads.

To investigate saturation also for non-UMI-based methods,

we applied a similar approach at the gene level by counting

the number of genes detected by at least one read. By fitting

an asymptote to the downsampled data, we estimated that

�90% (Drop-seq and SCRB-seq) to 100% (CEL-seq2/C1,

MARS-seq, Smart-Seq/C1, and Smart-seq2) of all genes pre-

sent in a library were detected at one million reads (Figure 3B;

Figure S2A). In particular, the deep sequencing of Smart-seq2 li-

braries showed clearly that the number of detected genes did not

change when increasing the sequencing depth from one million

to five million reads per cell (Figure S2B).

All in all, these analyses show that scRNA-seq libraries were

sequenced to a reasonable level of saturation at one million

reads, a cutoff that also has been suggested previously for

scRNA-seq datasets (Wu et al., 2014). While it can be more

efficient to invest in more cells at lower coverage (see our power

analyses below), one million reads per cell is a reasonable

sequencing depth for our purpose of comparing scRNA-seq

methods.
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Figure 3. Sensitivity of scRNA-Seq Methods
(A) Percentage of reads (downsampled to one million per cell) that cannot be mapped to the mouse genome (gray) are mapped to regions outside exons (orange)

or inside exons (blue). For UMI methods, dark blue denotes the exonic reads with unique UMIs.

(B) Median number of genes detected per cell (countsR1) when downsampling total read counts to the indicated depths. Dashed lines above one million reads

represent extrapolated asymptotic fits.

(C) Number of genes detected (countsR1) per cell. Each dot represents a cell and each box represents the median and first and third quartiles per replicate and

method.

(D) Cumulative number of genes detected as more cells are added. The order of cells considered was drawn randomly 100 times to display mean ± SD (shaded

area). See also Figures S3 and S4.
Smart-Seq2 Has the Highest Sensitivity
Taking the number of detected genes per cell as a measure of

sensitivity, we found that Drop-seq andMARS-seqhad the lowest
sensitivity, with a median of 4,811 and 4,763 genes detected per

cell, respectively, while CEL-seq2/C1, SCRB-seq, and Smart-

seq/C1 detected a median of 7,536, 7,906, and 7,572 genes per
Molecular Cell 65, 631–643, February 16, 2017 635
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Figure 4. Accuracy of scRNA-Seq Methods

ERCC expression values (counts per million reads for Smart-seq/C1 and

Smart-seq2 and UMIs per million reads for all others) were correlated to their

annotated molarity. Shown are the distributions of correlation coefficients

(adjusted R2 of linear regression model) across methods. Each dot represents

a cell/bead and each box represents the median and first and third quartiles.

See also Figure S5.
cell (Figure3C).Smart-seq2detected thehighestnumberofgenes

per cell with a median of 9,138. To compare the total number of

genes detected across many cells, we pooled the sequence

data of 65 cells per method, and we detected �19,000 genes for

CEL-Seq2/C1, �17,000 for MARS-seq, �18,000 for Drop-seq

and SCRB-Seq, �20,000 for Smart-seq/C1, and �21,000 for

Smart-seq2 (Figure 3D). While the majority of genes (�13,000)

were detected by all methods, �400 genes were specific to

each of the 30 countingmethods, and�1,000 geneswere specific

to each of the two full-length methods (Figure S3A). This higher

sensitivity of both full-length methods also was apparent when

plotting the genes detected in all available cells, as the 30 counting
methods leveled off below 20,000 genes while the two full-length

methods leveledoff above20,000genes (Figure3D). Suchadiffer-

ence could be caused by genes that have 30 ends that are difficult
tomap.However,we found that genes specific toSmart-seq2and

Smart-seq/C1map as well to 30 ends as genes with similar length

distribution that are not specifically detected by full-length

methods (Figure S3B). Hence, it seems that full-length methods

turn a slightly higher fraction of transcripts into sequenceablemol-

ecules than 30 counting methods and are more sensitive in this

respect. Importantly, method-specific genes are detected in

very few cells (87% of genes occur in one or two cells) with very

low counts (mean counts < 0.2, Figure S3C). This suggests that

they are unlikely to remain method specific at higher expression

levels and that their impact on conclusions drawn from scRNA-

seq data is rather limited (Lun et al., 2016).

Next, we investigated how reads are distributed along the

mRNA transcripts for all genes. As expected, the 30 counting
636 Molecular Cell 65, 631–643, February 16, 2017
methods showed a strong bias of reads mapped to the 30 end
(Figure S3D). However, it is worthmentioning that a considerable

fraction of reads also covered other segments of the transcripts,

probably due to internal oligo-dT priming (Nam et al., 2002).

Smart-seq2 showed a more even coverage than Smart-seq,

confirming previous findings (Picelli et al., 2013). A general differ-

ence in expression values between 30 counting and full-length

methods also was reflected in their strong separation by the first

principal component, explaining 37% of the total variance, and

when taking into account that one needs to normalize for gene

length for the full-length methods (Figure S4E).

As an absolute measure of sensitivity, we compared the prob-

ability of detecting the 92 spiked-in ERCCs, for which the num-

ber of molecules available for library construction is known (Fig-

ures S4A and S4B). We determined the detection probability of

each ERCC RNA as the proportion of cells with at least one

read or UMI count for the particular ERCC molecule (Marinov

et al., 2014). For Drop-seq, we used the previously published

ERCC-only dataset (Macosko et al., 2015), and for the other

five methods, 2%–5% of the one million reads per cell mapped

to ERCCs that were sequenced to complete saturation at that

level (Figure S5B). A 50% detection probability was reached at

�7, 11, 14, 16, 17, and 28 ERCC molecules for Smart-seq2,

Smart-seq/C1, CEL-seq2/C1, SCRB-seq, Drop-seq, and

MARS-seq, respectively (Figure S4C). Notably, the sensitivity

estimated from the number of detected genes does not fully

agree with the comparison based on ERCCs. While Smart-

seq2 was the most sensitive method in both cases, Drop-seq

performed better and SCRB-seq and MARS-seq performed

worse when using ERCCs. The separate generation and

sequencing of the Drop-seq ERCC libraries could be a possible

explanation for their higher sensitivity. However, it remains un-

clear why SCRB-seq and MARS-seq had a substantially lower

sensitivity when using ERCCs. It has been noted before that

ERCCs can be problematic for modeling endogenous mRNAs

(Risso et al., 2014), potentially due to their shorter length, shorter

poly-A tail, and their missing 50 cap (Gr€un and van Oudenaarden,

2015; Stegle et al., 2015). While ERCCs are still useful to gauge

the absolute range of sensitivities, the thousands of endogenous

mRNAs are likely to be a more reliable estimate for comparing

sensitivities as we used the same cell type for all methods.

In summary, we find that Smart-seq2 is the most sensitive

method, as it detects the highest number of genes per cell and

the most genes in total across cells and has the most even

coverage across transcripts. Smart-seq/C1 is slightly less sensi-

tive per cell and detects almost the same number of genes

across cells with slightly less even coverage. Among the 30

counting methods, CEL-seq2/C1 and SCRB-seq detect about

as many genes per cell as Smart-seq/C1, whereas Drop-seq

and MARS-seq detect considerably fewer genes.

Accuracy of scRNA-Seq Methods
To measure the accuracy of transcript level quantifications, we

compared the observed expression values (counts per million

or UMIs per million) with the known concentrations of the 92

ERCC transcripts (Figure S5A). For each cell, we calculated the

coefficient of determination (R2) for a linear model fit (Figure 4).

Methods differed significantly in their accuracy (Kruskal-Wallis
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Figure 5. Precision of scRNA-Seq Methods

We compared precision among methods using

the 13,361 genes detected in at least 25% of all

cells by any method in a subsample of 65 cells per

method.

(A) Distributions of dropout rates across the

13,361 genes are shown as violin plots, and me-

dians are shown as bars and numbers.

(B) Extra Poisson variability across the 13,361

genes was calculated by subtracting the ex-

pected amount of variation due to Poisson sam-

pling (square root of mean divided by mean)

from the CV (SD divided by mean). Distributions

are shown as violin plots and medians are

shown as bars and numbers. For 349, 336, 474,

165, 201, and 146 genes for CEL-seq2/C1, Drop-

seq, MARS-seq, SCRB-seq, Smart-seq/C1, and

Smart-seq2, respectively, no extra Poisson vari-

ability could be calculated. See also Figures S6

and S7.
test, p < 2.2e�16), but all methods had a fairly high R2 ranging

between 0.83 (MARS-seq) and 0.91 (Smart-seq2). This suggests

that, for all methods, transcript concentrations across this broad

range can be predicted fairly well from expression values. As ex-

pected, accuracy was worse for narrower and especially for

lower concentration ranges (Figure S5C). It is worth emphasizing

that the accuracy assessed here refers to absolute expression

levels across genes within cells. This accuracy can be important,

for example, to identify marker genes with a high absolute mRNA

expression level. However, the small differences in accuracy

seen here will rarely be a decisive factor when choosing among

the six protocols.

Precision of Amplified Genes Is Strongly Increased
by UMIs
While a high accuracy is necessary to compare absolute expres-

sion levels, one of the most common experimental aims is to

compare relative expression levels to identify differentially ex-

pressed genes or different cell types. Hence, the precision (i.e.,
Molecula
the reproducibility of the expression-level

estimate) is amajor factor when choosing

a method. As we used the same cell type

under the same culture conditions for all

methods, the amount of biological varia-

tion should be the same in the cells

analyzed by each of the six methods.

Hence, we can assume that differences

in the total variation among methods

are due to differences in their technical

variation. Technical variation is substan-

tial in scRNA-seq data primarily because

a substantial fraction of mRNAs is lost

during cDNA generation and small

amounts of cDNA get amplified. There-

fore, both the dropout probability and

the amplification noise need to be

considered when quantifying variation.
Indeed, a mixture model including a dropout probability and a

negative binomial distribution, modeling the overdispersion in

the count data, have been shown to represent scRNA-seq

data better than the negative binomial alone (Finak et al., 2015;

Kharchenko et al., 2014).

To compare precision without penalizing more sensitive

methods, we selected a common set of 13,361 genes that

were detected in 25% of the cells by at least one method (Fig-

ure S6A). We then analyzed these genes in a subsample of 65

cells per method to avoid a bias due to unequal numbers of cells.

We estimated the dropout probability as the fraction of cells with

zero counts (Figure 5A; Figure S6B). As expected from the num-

ber of detected genes per cell (Figure 3C), MARS-seq had the

highest median dropout probability (74%) and Smart-seq2 had

the lowest (26%) (Figure 5A). To estimate the amplification noise

of detected genes, we calculated the coefficient of variation (CV,

SD divided by the mean, including zeros), and we subtracted the

expected amount of variation due to Poisson sampling (i.e., the

square root of the mean divided by the mean). This was possible
r Cell 65, 631–643, February 16, 2017 637



for 96.5% (MARS-seq) to 98.9% (Smart-seq2) of all the 13,361

genes. This extra Poisson variability includes biological variation

(assumed to be the same across methods in our data) and tech-

nical variation, and the latter includes noise introduced by ampli-

fication (Brennecke et al., 2013; Gr€un et al., 2014; Stegle et al.,

2015). That amplification noise can be a major factor is seen

by the strong increase of extra Poisson variability when ignoring

UMIs and considering read counts only (Figure 5B, left; Fig-

ure S7A). This is expected, as UMIs should remove amplification

noise, which has been described previously for CEL-seq (Gr€un

et al., 2014). For SCRB-seq and Drop-seq, which are PCR-

based methods, UMIs removed even more extra Poisson vari-

ability than for CEL-seq2/C1 and MARS-seq (Figure 5B), which

is in line with the notion that amplification by PCR is more noisy

than amplification by in vitro transcription. Of note, Smart-seq2

had the lowest amplification noise when just considering reads

(Figure 5B, left), potentially because its higher sensitivity requires

less amplification and, hence, leads to less noise.

In summary, Smart-seq2 detects the common set of 13,361

genes in more cells than the UMI methods, but it has, as ex-

pected, more amplification noise than the UMI-based methods.

How the different combinations of dropout rate and amplification

noise affect the power of themethods is not evident, neither from

this analysis nor from the total coefficient of variation that ignores

the strong mean variance and mean dropout dependencies of

scRNA-seq data (Figure S7B).

Power Is Determined by aCombination of Dropout Rates
and Amplification Noise and Is Highest for SCRB-Seq
To estimate the combined impact of sensitivity and precision on

the power to detect differential gene expression, we simulated

scRNA-seq data given the observed dropout rates and variance

for the 13,361 genes. As these depend strongly on the expres-

sion level of a gene, it is important to retain the mean variance

and mean dropout relationships. To this end, we estimated the

mean, the variance (i.e., the dispersion parameter of the negative

binomial distribution), and the dropout rate for each gene and

method. We then fitted a cubic smoothing spline to the resulting

pairs of mean and dispersion estimates to predict the dispersion

of a gene given its mean (Figure S8A). Furthermore, we applied a

local polynomial regression model to account for the dropout

probability given a gene’s mean expression (Figure S8B).

When simulating data according to these fits, we recovered dis-

tributions of dropout rates and variance closely matching the

observed data (Figures S8C and S8D). To compare the power

for differential gene expression among the methods, we simu-

lated read counts for two groups of n cells and added log-fold

changes to 5%of the 13,361 genes in one group. Tomimic a bio-

logically realistic scenario, these log-fold changes were drawn

from observed differences between microglial subpopulations

from a previously published dataset (Zeisel et al., 2015). Simu-

lated datasets were tested for differential expression using

limma (Ritchie et al., 2015), and the true positive rate (TPR) and

the false discovery rate (FDR) were calculated. Of note, this

does include undetected genes, i.e., the 2.5% (SCRB-seq) to

6.8% (MARS-seq) of the 13,361 genes that had fewer than two

measurements in a particular method (Figure S6B) and for which

we could not estimate the variance. In our simulations, these
638 Molecular Cell 65, 631–643, February 16, 2017
genes could be drawn as differentially expressed, and in our

TPR they were then counted as false negatives for the particular

method. Hence, our power simulation framework considers the

full range of dropout rates and is not biased against more sensi-

tive methods.

First, we analyzed how the number of cells affects TPR and

FDR by running 100 simulations each for a range of 16 to 512

cells per group (Figure 6A). FDRs were similar in all methods

ranging from 3.9% to 8.7% (Figure S9A). TPRs differed consid-

erably amongmethods and SCRB-seq performed best, reaching

a median TPR of 80% with 64 cells. CEL-seq2/C1, Drop-seq,

MARS-seq, and Smart-seq2 performed slightly worse, reaching

80% power with 86, 99, 110, and 95 cells per group, respec-

tively, while Smart-seq/C1 needed 150 cells to reach 80%power

(Figure 6A). When disregarding UMIs, Smart-seq2 performed

best (Figure 6B), as expected from its low dropout rate and its

low amplification noise when considering reads only (Figure 5B).

Furthermore, power dropped especially for Drop-seq and

SCRB-seq (Figure 6B), as expected from the strong increase in

amplification noise of these two methods when considering

reads only (Figure 5B). When we stratified our analysis (consid-

ering UMIs) across five bins of expression levels, the ranking of

methods was recapitulated and showed that the lowest expres-

sion bin strongly limited the TPR in all methods (Figure S9B). This

ranking also was recapitulated when we analyzed a set of 19

genes previously reported to contain cell-cycle variation in the

2i/LIF culture condition (Kolodziejczyk et al., 2015b). The vari-

ance of these cell-cycle genes was clearly higher than the vari-

ance of 19 pluripotency and housekeeping (ribosomal) genes

in all methods. The p value of that difference was lowest for

SCRB-seq, the most powerful method, and highest for Smart-

seq/C1, the least powerful method (Figure S10D).

Notably, this power analysis, as well as the sensitivity, accu-

racy, and precision parameters analyzed above, includes the

variation that is generated in the two technical replicates

(batches) per method that we performed (Figure 1). These esti-

mates were very similar among our technical replicates, and,

hence, ourmethod comparison is valid with respect to batch var-

iations (Figures S10B–S10D). In addition, as batch effects are

known to be highly relevant for interpreting scRNA-seq data

(Hicks et al., 2015), we gauged the magnitude of batch effects

with respect to identifying differentially expressed genes. To

this end, we used limma to identify differentially expressed genes

between batches (FDR < 1%), using 25 randomly selected cells

per batch andmethod. All methods had significantly more genes

differentially expressed between batches than expected from

permutations (zero to four genes), with a median of 119 (Drop-

seq) to �1,135 (CEL-seq2/C1) differentially expressed genes

(Figure S10A). Notably, genes were affected at random across

methods, as there was no significant overlap among them

(extended hypergeometric test [Kalinka, 2013], p > 0.84). Hence,

this analysis once more emphasizes that batches are important

to consider in the design of scRNA-seq experiments (Hicks et al.,

2015). While a quantitative comparison of the magnitude of

batch effects among methods would require substantially more

technical replicates per method, the methods differ in their flex-

ibility to incorporate batch effect into the experimental design,

which is an important aspect to consider as discussed below.
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Figure 6. Power of scRNA-Seq Methods

Using the empirical mean/dispersion and mean/

dropout relationships (Figures S8A and S8B), we

simulated data for two groups of n cells each for

which 5% of the 13,361 genes were differentially

expressed, with log-fold changes drawn from

observed differences between microglial sub-

populations from a previously published dataset

(Zeisel et al., 2015). The simulated data were then

tested for differential expression using limma

(Ritchie et al., 2015), from which the average true

positive rate (TPR) and the average false discov-

ery rate (FDR) were calculated (Figure S9A).

(A) TPR for one million reads per cell for sample

sizes n = 16, n = 32, n = 64, n = 128, n = 256, and

n = 512 per group. Boxplots represent the median

and first and third quartiles of 100 simulations.

(B) TPR for one million reads per cell for n = 64 per

group with and without using UMI information.

Boxplots represent the median and first and third

quartiles of 100 simulations.

(C) TPRs as in (A) using mean/dispersion

and mean/dropout estimates from one million

(as in A), 0.5 million, and 0.25 million reads. Line

areas indicate the median power with SE from

100 simulations. See also Figures S8–S10 and

Table 1.
As a next step, we analyzed how the performance of the six

methods depends on sequencing depth. To this end, we per-

formed power simulations as above, but we estimated the

mean dispersion and mean dropout relationships from data

downsampled to 500,000 or 250,000 reads per cell. Overall,

the decrease in power was moderate (Figure 6C; Table 1) and

followed the drop in sensitivity at different sequencing depths

(Figure 3B). While Smart-seq2 and CEL-seq2/C1 needed just

1.3-fold more cells at 0.25 million reads than at one million reads

to reach 80% power, SCRB-seq and Drop-seq required 2.6-fold

more cells (Table 1). In summary, SCRB-seq is themost powerful

method at one million reads and half a million reads, but CEL-

seq2/C1 is the most powerful method at a sequencing depth

of 250,000 reads. The optimal balance between the number of

cells and their sequencing depth depends on many factors,
Molecula
including the scientific questions ad-

dressed, the experimental design, or the

sample availability. However, the mone-

tary cost is certainly an important one,

and we used the results of our simula-

tions to compare the costs among the

methods for a given level of power.

Cost Efficiency Is Similarly High for
Drop-Seq, MARS-Seq, SCRB-Seq,
and Smart-Seq2
Given the number of cells needed to

reach 80% power as simulated above

for three sequencing depths (Figure 6C),

we calculated the minimal costs to

generate and sequence these libraries.
For example, at a sequencing depth of one million reads,

SCRB-seq requires 64 cells per group to reach 80% power.

Generating 128 SCRB-seq libraries costs�260$ and generating

128 million reads costs �640$. Note that the necessary paired-

end reads for CEL-seq2/C1, SCRB-seq, MARS-seq, and Drop-

seq can be generated using a 50-cycle sequencing kit, and,

hence, we assume that sequencing costs are the same for all

methods.

Calculating minimal costs this way, Drop-seq (690$) is the

most cost-effective method when sequencing 254 cells at a

depth of 250,000 reads, and SCRB-seq (810$), MARS-seq

(820$), and Smart-seq2 (1,090$) are slightly more expensive at

the same performance (Table 1). For Smart-seq2 it should be

stressed that the use of in-house-produced Tn5 transposase

(Picelli et al., 2014a) is required to keep the cost at this level, as
r Cell 65, 631–643, February 16, 2017 639



Table 1. Cost Efficiency Extrapolation for Single-Cell RNA-Seq Experiments

Method TPRa FDRa (%) Cell per Groupb Library Cost ($) Minimal Costc ($)

CEL-seq2/C1 0.8 �6.1 86/100/110 �9 �2,420/2,310/2,250

Drop-seq 0.8 �8.4 99/135/254 �0.1 �1,010/700/690

MARS-seq 0.8 �7.3 110/135/160 �1.3 �1,380/1,030/820

SCRB-seq 0.8 �6.1 64/90/166 �2 �900/810/1,080

Smart-seq/C1 0.8 �4.9 150/172/215 �25 �9,010/9,440/11,290

Smart-seq2 (commercial) 0.8 �5.2 95/105/128 �30 �10,470/11,040/13,160

Smart-seq2 (in-house Tn5) 0.8 �5.2 95/105/128 �3 �1,520/1,160/1,090

See also Figure 6.
aTrue positive rate and false discovery rate are based on simulations (Figure 6; Figure S9).
bSequencing depth of one, 0.5, and 0.25 million reads.
cAssuming $5 per one million reads.
was done in our experiments. When instead using the Tn5 trans-

posase of the commercial Nextera kit as described (Picelli et al.,

2014b), the costs for Smart-seq2 are 10-fold higher. Even if one

reduces the amount of Nextera transposase to a quarter, as done

in the Smart-seq/C1 protocol, the Smart-seq2 protocol is still

four times more expensive than the early barcoding methods.

CEL-seq2/C1 is fairly expensive due to the microfluidic chips

that make up 69% of the library costs, and Smart-seq/C1 is

almost 13-fold less efficient than Drop-seq due to its high library

costs that arise from the microfluidic chips, the commercial

Smart-seq kit, and the costs for commercial Nextera XT kits.

Of note, these calculations are the minimal costs of the exper-

iment and several factors are not considered, such as labor

costs, costs to set up the methods, costs to isolate cells of inter-

est, or costs due to practical constraints in generating a fixed

number of scRNA-seq libraries with a fixed number of reads. In

many experimental settings, independent biological and/or tech-

nical replicates are needed when investigating particular factors,

such as genotypes or developmental time points, and Smart-

seq/C1, CEL-seq2/C1, and Drop-seq are less flexible in distrib-

uting scRNA-seq libraries across replicates than the other three

methods that use PCR plates. Furthermore, the costs are

increased by unequal sampling from the included cells as well

as from sequencing reads from cells that are excluded. In our

case, between 6% (SCRB-seq) and 32% (Drop-seq) of the reads

came from cell barcodes that were not included. While it is diffi-

cult to exactly calculate and compare these costs among

methods, it is clear that they will increase the costs for Drop-

seq relatively more than for the other methods. In summary,

we find that Drop-seq, SCRB-seq, and MARS-seq are the

most cost-effective methods, closely followed by Smart-seq2,

if using an in-house-produced transposase.

DISCUSSION

Here we have provided an in-depth comparison of six prominent

scRNA-seq protocols. To this end, we generated data for all six

compared methods from the same cells, cultured under the

same condition in the same laboratory. While there would be

manymore datasets andmethods for a comparison of the sensi-

tivity and accuracy of the ERCCs (Svensson et al., 2016), our

approach provides a more controlled and comprehensive com-
640 Molecular Cell 65, 631–643, February 16, 2017
parison across thousands of endogenous genes. This is impor-

tant, as can be seen by the different sensitivity estimates that

we obtained for Drop-seq, MARS-seq, and SCRB-seq using

the ERCCs. In our comparison, we clearly find that Smart-seq2

is the most sensitive method, closely followed by SCRB-seq,

Smart-seq/C1, and CEL-seq2/C1, while Drop-seq and MARS-

seq detect nearly 50% fewer genes per cell (Figures 3B and

3C). In addition, Smart-seq2 shows themost even read coverage

across transcripts (Figure S3D), making it the most appropriate

method for the detection of alternative splice forms and for ana-

lyses of allele-specific expression using SNPs (Deng et al., 2014;

Reinius et al., 2016). Hence, Smart-seq2 is certainly the most

suitable method when an annotation of single-cell transcrip-

tomes is the focus. Furthermore, we find that Smart-seq2 is

also themost accurate method (i.e., it has the highest correlation

of known ERCC spike-in concentrations and read counts per

million), which is probably related to its higher sensitivity. Hence,

differences in expression values across transcripts within the

same cell predict differences in the actual concentrations of

these transcripts well. All methods do this rather well, at least

for higher expression levels, and we think that the small differ-

ences among methods will rarely be a decisive factor. Impor-

tantly, the accuracy of estimating transcript concentrations

across cells (relevant, e.g., for comparing the total RNA content

of cells) depends on different factors and cannot be compared

well among the tested methods as it would require known con-

centration differences of transcripts across cells. However, it is

likely that methods that can use UMIs and ERCCs (CEL-seq2/

C1, MARS-seq, and SCRB-seq) would have a strong advantage

in this respect.

How well relative expression levels of the same genes can be

compared across cells depends on two factors. First, how often

(i.e., in how many cells and from how many molecules) it is

measured. Second, with how much technical variation (i.e.,

with how much noise, e.g., from amplification) it is measured.

For the first factor (dropout probability), we find Smart-seq2 to

be the best method (Figure 5A), as expected from its high gene

detection sensitivity. For the second factor (extra Poisson vari-

ability), we find the four UMI methods to perform better (Fig-

ure 5B), as expected from their ability to eliminate variation intro-

duced by amplification. To assess the combined effect of these

two factors, we performed simulations for differential gene



expression scenarios (Figure 6). This allowed us to translate the

sensitivity and precision parameters into the practically relevant

power to detect differentially expressed genes. Of note, our po-

wer estimates include the variation that is caused by the two

different replicates per method that constitutes an important

part of the variation. Our simulations show that, at a sequencing

depth of one million reads, SCRB-seq has the highest power,

probably due to a good balance of high sensitivity and low ampli-

fication noise. Furthermore, amplification noise and power

strongly depend on the use of UMIs, especially for the PCR-

based methods (Figures 5B and 6B; Figure S7). Notably, this is

due to the large amount of amplification needed for scRNA-

seq libraries, as the effect of UMIs on power for bulk RNA-seq

libraries is negligible (Parekh et al., 2016).

Perhaps practically most important, our power simulations

also allow us to compare the efficiency of the methods by calcu-

lating the costs to generate the data for a given level of power.

Using minimal cost calculations, we find that Drop-seq is the

most cost-effective method, closely followed by SCRB-seq,

MARS-seq, and Smart-seq2. However, Drop-seq costs are likely

to be more underestimated, due to lower flexibility in generating

a specified number of libraries and the higher fraction of reads

that come from bad cells. Hence, all four UMI methods are in

practice probably similarly cost-effective. In contrast, for

Smart-seq2 to be similarly cost-effective it is absolutely neces-

sary to use in-house-produced transposase or to drastically

reduce volumes of commercial transposase kits (Lamble et al.,

2013; Mora-Castilla et al., 2016).

Given comparable efficiencies of Drop-seq, MARS-seq,

SCRB-seq, and Smart-seq2, additional factors will play a

role when choosing a suitable method for a particular ques-

tion. Due to its low library costs, Drop-seq is probably prefer-

able when analyzing large numbers of cells at low coverage

(e.g., to find rare cell types). On the other hand, Drop-seq in

its current setup requires a relatively large amount of cells

(>6,500 for 1 min of flow). Hence, if few and/or unstable cells

are isolated by FACS, the SCRB-seq, MARS-seq, or Smart-

seq2 protocols are probably preferable. Additional advantages

of these methods over Drop-seq include that technical varia-

tion can be estimated from ERCCs for each cell, which can

be helpful to estimate biological variation (Kim et al., 2015;

Vallejos et al., 2016), and that the exact same setup can be

used to generate bulk RNA-seq libraries. While SCRB-seq is

slightly more cost-effective than MARS-seq and has the

advantage that one does not need to produce the transposase

in-house, Smart-seq2 is preferable when transcriptome anno-

tation, identification of sequence variants, or the quantification

of different splice forms is of interest. Furthermore, the pres-

ence of batch effects shows that experiments need to be

designed in a way that does not confound batches with bio-

logical factors (Hicks et al., 2015). Practically, plate-based

methods might currently accommodate complex experimental

designs with various biological factors more easily than micro-

fluidic chips.

We find that Drop-seq, MARS-seq, SCRB-seq, and Smart-

seq2 (using in-house transposase) are 2- to 13-fold more cost

efficient than CEL-seq2/C1, Smart-seq/C1, and Smart-seq2

(using commercial transposase). Hence, the latter methods
would need to increase in their power and/or decrease in their

costs to be competitive. The efficiency of the Fluidigm C1 plat-

form can be further increased bymicrofluidic chips with a higher

throughput, as available in the high-throughput (HT) mRNA-seq

integrated fluidic circuit (IFC) chip. While CEL-seq2/C1 has

been found to more sensitive than the plate-based version of

CEL-seq2 (Hashimshony et al., 2016), the latter might be

more efficient when considering its lower costs. Our finding

that Smart-seq2 is themost sensitive protocol also hints toward

further possible improvements of SCRB-seq and Drop-seq. As

these methods also rely on template switching and PCR ampli-

fication, the improvements found in the systematic optimization

of Smart-seq2 (Picelli et al., 2013) also could improve the sensi-

tivity of SCRB-seq and Drop-seq. Furthermore, the costs of

SCRB-seq libraries per cell can be halved when switching to

a 384-well format (Soumillon et al., 2014). Similarly, improve-

ments made for CEL-seq2 (Hashimshony et al., 2016) could

be incorporated into the MARS-seq protocol. Hence, it is clear

that scRNA-seq protocols will become even more efficient in

the future. The results of our comparative analyses of six

currently prominent scRNA-seq methods may facilitate such

developments, and they provide a framework for method eval-

uation in the future.

In summary, we systematically compared six prominent

scRNA-seq methods and found that Drop-seq is preferable

when quantifying transcriptomes of large numbers of cells

with low sequencing depth, SCRB-seq and MARS-seq is pref-

erable when quantifying transcriptomes of fewer cells, and

Smart-seq2 is preferable when annotating and/or quantifying

transcriptomes of fewer cells as long one can use in-house-

produced transposase. Our analysis allows an informed

choice among the tested methods, and it provides a frame-

work for benchmarking future improvements in scRNA-seq

methodologies.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

Esgro recombinant mouse LIF Millipore ESG1107

CHIR99021 Axon Med Chem 1386

PD0325901 Axon Med Chem 1408

2-Mercaptoethanol Sigma-Aldrich M3148

FBS Sigma-Aldrich F7524

Penicillin/Streptomycin Sigma-Aldrich P4333

MEM non-essential amino acids Sigma-Aldrich M7145

L-glutamine Sigma-Aldrich G7513

Dulbecco’s modified Eagle’s medium Sigma-Aldrich D6429

Perfluoroctanol Sigma-Aldrich 370533

Maxima H- Reverse Transcriptase Thermo Fisher Scientific EP0753

SuperScript II Life Technologies 18064071

Exonuclease I New England Biolabs M0293L

RNAprotect Cell Reagent QIAGEN 76526

RNase inhibitor Promega N2515

RNase inhibitor Lucigen 30281-2-LU

Phusion HF buffer New England Biolabs B0518S

Proteinase K Ambion AM2546

KAPA HiFi HotStart polymerase KAPA Biosystems KAPBKK2602

Phusion HF PCR Master Mix Thermo Fisher Scientific F531L

dNTPs New England Biolabs N0447L

Triton X-100 Sigma-Aldrich T8787

SDS Sigma-Aldrich L3771

Tn5 transposase Picelli et al., 2014a N/A

Critical Commercial Assays

C1 Single-Cell System Fluidigm N/A

C1 IFC for Open App (10-17 mm) Fluidigm 100-8134

C1 IFC for mRNA-seq (10-17 mm) Fluidigm 100-6041

Nextera XT DNA Sample Preparation Kit Illumina FC-131-1096

SMARTer Ultra Low RNA Kit for Fluidigm C1 Clontech 634833

MinElute Gel Extraction Kit QIAGEN 28606

Deposited Data

single-cell RNA-seq data This paper GEO: GSE75790

Drop-seq ERCC data Macosko et al., 2015 GEO: GSE66694

Experimental Models: Cell Lines

J1 mouse embryonic stem cells Li et al., 1992 N/A

Sequence-Based Reagents

Nextera XT Index Kit Illumina FC-121-1012

SCRB-seq P5 primer, AATGATACGGCGACCACCG

AGATCTACACTCTTTCCCTACACGACGCTCTTC

CG*A*T*C*T, * PTO bond

IDT N/A

SCRB-seq oligo-dT primer, Biotin-ACACTCTTTCCCT

ACACGACGCTCTTCCGATCT[BC6][N10][T30]VN

IDT ‘‘TruGrade Ultramer’’

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

SCRB-seq template-switch oligo, iCiGiCACACTCTTTCC

CTACACGACGCrGrGrG

Eurogentech N/A

Drop-seq P5 primer, AATGATACGGCGACCACCGAGA

TCTACACGCCT GTCCGCGGAAGCAGTGGTATCAACG

CAGAGT*A*C, * PTO bond

IDT N/A

Drop-seq oligo-dT primer beads, Bead–Linker-

TTTTTTTAAGCAGTGGTATCAAC

GCAGAGTAC[BC12][N8][T30]

Chemgenes MACOSKO-2011-10

Drop-seq template-switch oligo, AAGCAGTGGTATCA

ACGCAGAGTGAATrGrGrG

IDT N/A

CEL-seq2 oligo-dT primer, GCCGGTAATACGACTCACTATA

GGGAGTTCTACAGTCCGACGATC[N6][BC6][T25]

Sigma-Aldrich N/A

ERCC RNA Spike-In Mix Ambion 4456740

Software and Algorithms

STAR Dobin et al., 2013 https://github.com/alexdobin/STAR

Drop-seq tools Macosko et al.,

2015

http://mccarrolllab.com/dropseq/

featureCounts Liao et al., 2013 https://bioconductor.org/packages/release/

bioc/html/Rsubread.html

R N/A www.r-project.org

Other

Drop-seq PDMS device Nanoshift Drop-seq

2% E-Gel Agarose EX Gels Life Technologies G402002
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the corresponding author

Wolfgang Enard (enard@biologie.uni-muenchen.de).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

J1 mouse embryonic stem cells (Li et al., 1992) were maintained on gelatin-coated dishes in Dulbecco’s modified Eagle’s medium

supplemented with 16% fetal bovine serum (FBS, Sigma-Aldrich), 0.1mM b-mercaptoethanol (Sigma-Aldrich), 2mML-glutamine, 1x

MEM non-essential amino acids, 100 U/ml penicillin, 100 mg/ml streptomycin (Sigma-Aldrich), 1000 U/ml recombinant mouse LIF

(Millipore) and 2i (1 mM PD032591 and 3 mM CHIR99021 (Axon Medchem, Netherlands). J1 embryonic stem cells were obtained

from E. Li and T. Chen and mycoplasma free determined by a PCR-based test. Cell line authentication was not recently performed.

METHOD DETAILS

Published data
Drop-seq ERCC (Macosko et al., 2015) data were obtained under accession GEO: GSE66694. Raw fastq files were extracted using

the SRA toolkit (2.3.5). We trimmed cDNA reads to the same length and processed raw reads in the same way as data sequenced for

this study.

Single cell RNA-seq library preparations
CEL-seq2/C1

CEL-seq2/C1 libraries were generated as previously described (Hashimshony et al., 2016). Briefly, cells (200,000/ml), ERCC spike-

ins, reagents and barcoded oligo-dT primers (Sigma-Aldrich) were loaded on a 10-17 mm C1 Open-App microfluidic IFC (Fluidigm).

Cell lysis, reverse transcription, second strand synthesis and in-vitro transcription were performed on-chip. Subsequently, harvested

aRNA was pooled from 48 capture sites. After fragmentation and clean-up, 5 ml of aRNA was used to construct final libraries by

reverse transcription (SuperScript II, Thermo Fisher) and library PCR (Phusion HF, Thermo Fisher).
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Drop-seq

Drop-seq experiments were performed as published (Macosko et al., 2015) and successful establishment of the method in our lab

was confirmed by a species-mixing experiment (Figure S1A). For this work, J1 mES cells (100/ml) and barcode-beads (120/ml, Chem-

genes) were co-flown in Drop-seq PDMS devices (Nanoshift) at rates of 4000 ml/hr. Collected emulsions were broken by addition of

perfluorooctanol (Sigma-Aldrich) and mRNA on beads was reverse transcribed (Maxima RT, Thermo Fisher). Unused primers were

degraded by addition of Exonuclease I (New England Biolabs). Washed beads were counted and aliquoted for pre-amplification

(2000 beads / reaction). Nextera XT libraries were constructed from 1 ng of pre-amplified cDNA with a custom P5 primer (IDT).

MARS-seq

To construct single cell libraries from polyA-tailed RNA, we appliedmassively parallel single-cell RNA sequencing (MARS-Seq) (Jaitin

et al., 2014). Briefly, single cells were FACS-sorted into 384-well plates, containing lysis buffer and reverse-transcription (RT) primers.

The RT primers contained the single cell barcodes and unique molecular identifiers (UMIs) for subsequent de-multiplexing and

correction for amplification biases, respectively. Spike-in transcripts (ERCC, Ambion) were added, polyA-containing RNA was con-

verted into cDNA as previously described and then pooled using an automated pipeline (liquid handling robotics). Subsequently,

samples were linearly amplified by in vitro transcription, fragmented, and 30 ends were converted into sequencing libraries. The li-

braries consisted of 48 single cell pools.

SCRB-seq

RNA was stabilized by resuspending cells in RNAprotect Cell Reagent (QIAGEN) and RNase inhibitors (Promega). Prior to FACS

sorting, cells were diluted in PBS (Invitrogen). Single cells were sorted into 5 ml lysis buffer consisting of a 1/500 dilution of Phusion

HF buffer (New England Biolabs) and ERCC spike-ins (Ambion), spun down and frozen at �80�C. Plates were thawed and libraries

prepared as described previously (Soumillon et al., 2014). Briefly, RNA was desiccated after protein digestion by Proteinase K (Am-

bion). RNA was reverse transcribed using barcoded oligo-dT primers (IDT) and products pooled and concentrated. Unincorporated

barcode primers were digested using Exonuclease I (New England Biolabs). Pre-amplification of cDNA pools were done with the

KAPA HiFi HotStart polymerase (KAPA Biosystems). Nextera XT libraries were constructed from 1 ng of pre-amplified cDNA with

a custom P5 primer (IDT).

Smart-seq/C1

Smart-seq/C1 libraries were prepared on the Fluidigm C1 system using the SMARTer Ultra Low RNA Kit (Clontech) according to the

manufacturer’s protocol. Cells were loaded on a 10-17 mm RNA-seq microfluidic IFC at a concentration of 200,000/ml. Capture site

occupancy was surveyed using the Operetta (Perkin Elmer) automated imaging platform.

Smart-seq2

mESCswere sorted into 96-well PCR plates containing 2 ml lysis buffer (1.9 ml 0.2%Triton X-100; 0.1 ml RNase inhibitor (Lucigen)) and

spike-in RNAs (Ambion), spun down and frozen at�80�C. To generate Smart-seq2 libraries, priming buffermix containing dNTPs and

oligo-dT primers was added to the cell lysate and denatured at 72�C. cDNA synthesis and pre-amplification of cDNA was performed

as described previously (Picelli et al., 2014b, 2013). Sequencing libraries were constructed from 2.5 ng of pre-amplified cDNA using

an in-house generated Tn5 transposase (Picelli et al., 2014a). Briefly, 5 ml cDNA was incubated with 15 ml tagmentation mix (1 ml of

Tn5; 2 ml 10x TAPS MgCl2 Tagmentation buffer; 5 ml 40% PEG8000; 7 ml water) for 8 min at 55�C. Tn5 was inactivated and released

from the DNA by the addition of 5 ml 0.2% SDS and 5 min incubation at room temperature. Sequencing library amplification was per-

formed using 5 ml Nextera XT Index primers (Illumina) that had been first diluted 1:5 in water and 15 ml PCR mix (1 ml KAPA HiFi DNA

polymerase (KAPA Biosystems); 10ml 5x KAPA HiFi buffer; 1.5 ml 10mM dNTPs; 2.5ml water) in 10 PCR cycles. Barcoded libraries

were purified and pooled at equimolar ratios.

DNA sequencing
For SCRB-seq and Drop-seq, final library pools were size-selected on 2% E-Gel Agarose EX Gels (Invitrogen) by excising a range of

300-800 bp and extracting DNA using the MinElute Kit (QIAGEN) according to the manufacturer’s protocol.

Smart-seq/C1, CEL-seq2/C1, Drop-seq and SCRB-seq library pools were sequenced on an Illumina HiSeq1500. Smart-seq2

pools were sequenced on Illumina HiSeq2500 (Replicate A) and HiSeq2000 (Replicate B) platforms. MARS-seq library pools were

sequenced on an Illumina HiSeq2500 using the Rapid mode. Smart-seq/C1 and Smart-seq2 libraries were sequenced 45 cycles sin-

gle-end, whereas CEL-seq2/C1, Drop-seq and SCRB-seq libraries were sequenced paired-end with 15-20 cycles to decode cell

barcodes andUMI from read 1 and 45 cycles into the cDNA fragment. MARS-seq libraries were paired-end sequencedwith 52 cycles

on read 1 into the cDNA and 15 bases for read 2 to obtain cell barcodes and UMIs. Similar sequencing qualities were confirmed by

FastQC v0.10.1 (Figure S1B).

QUANTIFICATION AND STATISTICAL ANALYSIS

Basic data processing and sequence alignment
Smart-seq/C1/Smart-seq2 libraries (i5 and i7) and CELseq2/C1/Drop-seq/SCRB-seq pools (i7) were demultiplexed from the Illumina

barcode reads using deML (Renaud et al., 2015). MARS-seq library pools were demultiplexed with the standard Illumina pipeline. All

reads were trimmed to the same length of 45 bp by cutadapt (Martin, 2011) (v1.8.3) and mapped to the mouse genome (mm10)
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including mitochondrial genome sequences and unassigned scaffolds concatenated with the ERCC spike-in reference. Alignments

were calculated using STAR 2.4.0 (Dobin et al., 2013) using all default parameters.

For libraries containing UMIs, cell- and gene-wise count/UMI tables were generated using the published Drop-seq pipeline (v1.0)

(Macosko et al., 2015). We discarded the last 2 bases of the Drop-seq cell and molecular barcodes to account for bead synthesis

errors. For Smart-seq/C1 and Smart-seq2, features were assigned and counted using the Rsubread package (v1.20.2) (Liao

et al., 2013).

Power Simulations
We developed a framework in R for statistical power evaluation of differential gene expression in single cells. For each method, we

estimated the mean expression, dispersion and dropout probability per gene from the same number of cells per method. In the read

count simulations, we followed the framework proposed in Polyester (Frazee et al., 2015), i.e., we retained the observed mean-vari-

ance dependency by applying a cubic smoothing spline fit to capture the heteroscedasticity observed. Furthermore, we included a

local polynomial regression fit for the mean-dropout relationship. In each iteration, we simulated count measurements for the 13,361

genes for sample sizes of 24, 25, 26, 27, 28 and 29 cells per group. The read count for a gene i in a cell j is modeled as a product of a

binomial and negative binomial distribution:

Xij � Bðp= 1� p0Þ � NBðm; qÞ:
Themean expressionmagnitude mwas randomly drawn from the empirical distribution. 5 percent of the genes were defined as differ-

entially expressed with an effect size drawn from the observed fold changes betweenmicroglial subpopulations in Zeisel et al. (Zeisel

et al., 2015). The dispersion q and dropout probability p0 were predicted by above mentioned fits.

For each method and sample size, 100 RNA-seq experiments were simulated and tested for differential expression using limma

(Ritchie et al., 2015) in combination with voom (Law et al., 2014) (v3.26.7). The power simulation framework was implemented in

R (v3.3.0).

ERCC capture efficiency
To estimate the singlemolecule capture efficiency, we assume that the success or failure of detecting an ERCC is a binomial process,

as described before (Marinov et al., 2014). Detections are independent from each other and are thus regarded as independent Ber-

noulli trials. We recorded the number of cells with nonzero and zero read or UMI counts for each ERCC per method and applied a

maximum likelihood estimation to fit the probability of successful detection. The fit line was shaded with the 95%Wilson score con-

fidence interval.

Cost efficiency calculation
We based our cost efficiency extrapolation on the power simulations starting from empirical data at different sequencing depths

(250,000 reads, 500,000 reads, 1,000,000 reads; Figure 6C). We determined the number of cells required per method and depth

for adequate power (80%) by an asymptotic fit to the median powers. For the calculation of sequencing cost, we assumed 5V

per million raw reads, independent of method. Although UMI-based methods need paired-end sequencing, we assumed a 50 cycle

sequencing kit is sufficient for all methods. We used prices in Euro as a basis and consider an exchange course of 1:1 for the given

prices in USD.

DATA AND SOFTWARE AVAILABILITY

The accession number for the raw and analyzed scRNA-seq data reported in this paper is GEO: GSE75790.
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