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Landscape and variation of RNA secondary structure
across the human transcriptome
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In parallel to the genetic code for protein synthesis, a second layer
of information is embedded in all RNA transcripts in the form of
RNA structure. RNA structure influences practically every step in
the gene expression program1. However, the nature of most RNA
structures or effects of sequence variation on structure are not known.
Here we report the initial landscape and variation of RNA secondary
structures (RSSs) in a human family trio (mother, father and their
child). This provides a comprehensive RSS map of human coding
and non-coding RNAs. We identify unique RSS signatures that demar-
cate open reading frames and splicing junctions, and define authen-
tic microRNA-binding sites. Comparison of native deproteinized
RNA isolated from cells versus refolded purified RNA suggests that
the majority of the RSS information is encoded within RNA sequence.
Over 1,900 transcribed single nucleotide variants (approximately
15% of all transcribed single nucleotide variants) alter local RNA
structure. We discover simple sequence and spacing rules that deter-
mine the ability of point mutations to impact RSSs. Selective deple-
tion of ‘riboSNitches’ versus structurally synonymous variants at
precise locations suggests selection for specific RNA shapes at thou-
sands of sites, including 39 untranslated regions, binding sites of
microRNAs and RNA-binding proteins genome-wide. These results
highlight the potentially broad contribution of RNA structure and
its variation to gene regulation.

We performed parallel analysis of RNA structure2 (PARS) on RNA
isolated from lymphoblastoid cells of a family trio (Fig. 1a). Deep
sequencing of RNA fragments generated by RNase V1 or S1 nuclease
(Extended Data Fig. 1a) determined the double or single-stranded
regions, respectively, across the human transcriptome. We obtained
over 160-million mapped reads for each individual. Transcript abund-
ance and structure profiles are highly correlated among the individuals
(Extended Data Fig. 2a, b). Summation of PARS data from the trio
produced structural information for .20,000 transcripts with at least 1
read per base (load $ 1, Fig. 1b), and accurately identified known RSSs
in RNAs (Fig. 1c and Extended Data Fig. 1b, c). We also developed
methods for RNA extraction, deproteinization, and PARS under native
conditions (native deproteinized samples) that accurately captured
structures with known RSS, and revealed RSS for 6,524 transcripts
(Extended Data Fig. 3a–d).

PARS data for thousands of transcripts afforded a genome-wide view
of the structural landscape of human messenger RNAs. Metagene ana-
lysis shows that, on average, the coding region (CDS) is demarcated by
focally accessible regions near the translational start site and stop codon.
Contrary to yeast, human CDS is slightly more single-stranded than
the untranslated regions (UTRs) (Fig. 1d), similar to previous trends in
other metazoans3. A three-nucleotide structure periodicity is present
in the CDS and absent in UTRs, consistent with prior computational
prediction4. Both renatured and native mRNAs showed similar RSS
features, suggesting that RNA sequence is a strong determinant of RSS.

However, RNA structures also deviate from sequence content. In par-
ticular, human 39 UTR has low GC content but is highly structured
(Fig. 1d). We also identified 583 (5.7%) consistently different regions
between native deproteinized and renatured structure profiles, provid-
ing candidate sites for regulation of RNA structure in vivo (Supplemen-
tary Table 1). Highly structured RNAs have fewer structure differences
as compared to mRNAs (Extended Data Fig. 3e), suggesting stronger
evolutionary selection for functional conformations. We note that 3.7%
of bases (residing in 9.7% of transcripts) have both strong V1 and S1
reads, indicating the existence of multiple mRNA conformations.

We detected unique signatures of RSSs at sites of post-transcriptional
regulation. RNA structure is believed to be important in regulating
distinct splicing signals on exons and introns of pre-messenger RNAs5.
We observed a unique asymmetric RSS signature at the exon–exon junc-
tion in both renatured and native deproteinized transcripts that is not
simply explained by GC content. The terminal AG dinucleotide at the
end of the 59 exon tends to be more accessible, whereas the first nucleo-
tides of the 39 exon are more structured (Fig. 2a and Extended Data Fig. 3f).
Hence, a specific RSS signature may contribute to RNA splicing.

Regulation of mRNAs by microRNAs (miRNAs) is an important
post-transcriptional process that causes translation repression and/or
mRNA degradation6. However the extent to which structural access-
ibility drives productive miRNA targeting is still unclear. Analysis of
RSS from renatured RNA around predicted miRNA targets revealed
that true Argonaute (AGO)-bound target sites7 show strong structural
accessibility from 21 to 3 nucleotides upstream of the miRNA-target
site compared to predicted targets not bound by AGO (P , 10210,
Wilcoxon rank-sum test; Fig. 2b, orange window, and Extended Data
Fig. 4a). AGO-bound sites are also more accessible at bases 4 to 6 of the
miRNA-target site (P 5 0.004, Wilcoxon rank-sum test), agreeing with
prior computational predictions8. To test whether our identified 59 acces-
sibility neighbourhood (21 to 3 nucleotides) is truly important for
AGO binding, we performed AGO individual nucleotide-resolution
crosslinking and immunoprecipitation (iCLIP) on each member of the
trio. Separating the predicted target sites according to average 59 struc-
tural accessibility showed that single-stranded targets are more likely to
be AGO-bound than double-stranded targets (Fig. 2c and Extended
Data Fig. 4b). The most significant difference in AGO binding occurs
close to our identified accessible region (P 5 0.01, Fig. 2d). Separating
predicted targets into five accessibility quantiles also demonstrated
that the most accessible 20% of predicted targets are most AGO bound
(P , 10219, Fig. 2e). Furthermore, ectopic expression of miR142 or
miR148 in HeLa cells9 resulted in greater repression of mRNAs with
the 100 most accessible sites as compared to mRNAs with the 100 least
accessible sites (P , 0.005, Wilcoxon rank-sum test; Fig. 2f and Extended
Data Fig. 4c, d). This indicates that mRNAs with accessible miRNA
sites are more likely to be true targets, and upstream accessibility is
important for miRNA targeting.
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Comparison of RNA structural landscapes between individuals
revealed the impact of diverse sequence variants on RNA structure.
As a class, local PARS score differences at single nucleotide variants
(SNVs) were significantly greater than biological replicates of an invari-
ant doped in RNA (P , 0.001 Kolmogorov–Smirnov test; Extended
Data Fig. 5a). SNVs that alter RNA structure, known as ‘riboSNitches’,
also exhibit threefold greater local structure change than replicates of
the same sequence in different individuals (Extended Data Fig. 5b). At
a gene level, transcripts with SNVs are significantly more disrupted,
calculated using the experimental structure disruption coefficient (eSDC)10,
than transcripts without SNVs (P 5 1.3 3 1024, Kolmogorov–Smirnov
Test; Extended Data Fig. 5c, d). Furthermore, 78.2% of all structure
changing bases lie in transcripts that contain either SNVs or indels,
suggesting that sequence variation is important in shaping RSS vari-
ation in the human transcriptome (Extended Data Fig. 5e). The list of
the top 2,000 disrupted transcripts is shown in Supplementary Table 2.

To pinpoint riboSNitches11, we calculated structure changes between
each pair of individuals (Fig. 3a) and selected SNVs that had large PARS
score differences, low false discovery rate (FDR), significant P value,
and high local read coverage (Methods). Permutation analysis across
genotypes and along transcripts confirmed that riboSNitches are sig-
nificantly detected over random noise (Methods). We experimentally
validated nine riboSNitches using independent structure probing methods
such as nucleases, selective 29 hydroxyl acylation and primer extension
(SHAPE) or dimethyl sulphate (DMS), and confirmed the ability of PARS

to discover riboSNitches (Extended Data Figs 6–9). The SeqFold pro-
gram is used to visualize structure changes caused by riboSNitches12

(Fig. 3b, c and Extended Data Fig. 7g, h).
We found that 1,907 out of 12,233 (15%) SNVs switched RNA struc-

ture in the trio (Fig. 3d, Extended Data Fig. 5e and Supplementary
Table 3). As riboSNitches are expected to cause RSS changes in a her-
itable and allele-specific fashion, we performed allele-specific PARS in
the cell line derived from the child by mapping uniquely across each of
the two alleles for SNVs that are homozygous and different in the
parents (for example, father AA and mother GG, with child AG when
he or she inherits one copy from each parent) (Methods and Extended
Data Fig. 6e). Out of 172 parental homozygous riboSNitches, 117 (68%)
were validated by allele-specific mapping in the child. As only reads
upstream of the riboSNitch can be uniquely mapped and detected, this
is likely to be an underestimate. We also observed a validation rate of 61%
in native deproteinized samples of the child, indicating that the struc-
tural changes are biologically relevant in vivo (Extended Data Fig. 9b).

The large numbers of riboSNitches identified raised the possibility
that riboSNitches may have greater influence on gene regulation and
human diseases than previously appreciated. Intersection with expres-
sion quantitative trait loci (eQTL) identified 211 riboSNitches that are
associated with changes in gene expression (Supplementary Table 4).
Overlapping riboSNitches with the NHGRI catalogue of genome-wide
association studies identified 22 unique riboSNitches that are assoc-
iated with diverse human diseases and phenotypes, including multiple
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Figure 1 | PARS reveals the landscape of human RNA structure.
a, Experimental overview. Circles represent females, squares represent males.
b, Pie chart showing the distribution of structure-probed RNAs with a coverage
of at least one read per base. c, High (red arrows) and low (green arrows)
PARS scores were mapped onto the secondary structure of small nucleolar
RNA snoRNA74A. Red (positive PARS score), double-stranded regions by
PARS score; green (negative PARS score), single-stranded regions by PARS
score. The colour intensity reflects the magnitude of the PARS scores. Darker

red and darker green, reflect more positive and more negative PARS
scores (double- and single-stranded regions), respectively. d, PARS score
(top, renatured transcripts; middle, native deproteinized transcripts) and GC
content (bottom) across the 59 UTR, the coding region, and the 39 UTR,
averaged across all transcripts, aligned by translational start and stop sites.
Averaged regions are shaded in pink, blue and green for 59 UTR, CDS and
39 UTR, respectively.
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sclerosis, asthma and Parkinson’s disease (Supplementary Table 5).
Hence, many non-coding changes in the transcriptome may alter gene
function by altering RNA structure.

We also observed sequence and context rules in riboSNitches. First,
riboSNitches that lie in double- or single-stranded regions tend to
become more single- or double-stranded, respectively, after nucleotide
change (Fig. 3e). Second, the nucleotide content of the riboSNitch is
instructive of the direction of RSS change. Bases that undergo G/C to
A/T changes tend to become more single-stranded, whereas bases that

change from A/T to G/C tend to become more paired (Fig. 3f). This
effect is stronger for homozygous riboSNitches than heterozygous ribo-
SNitches, and typically disrupts 10 bases centred on the mutation.
Third, the structural context flanking SNVs influence their transition
to become more single- or double-stranded (Extended Data Fig. 10a–c).
Fourth, riboSNitches have fewer SNVs around them as compared to
non-structure changing SNVs, suggesting that co-variation of some
SNVs may help to maintain functional RNA structures (Extended Data
Fig. 10d).

The distribution of extant riboSNitches provides insights into regions
of the transcriptome that require specific RNA shape. If an RSS is
functionally important, a riboSNitch that disrupts the structure will
be evolutionarily selected against, whereas a non-structure-changing
SNV will not (Fig. 4a)13. We tested whether such selection occurs in the
human transcriptome, and found that riboSNitches are significantly
depleted at 39 UTRs compared to control SNVs (P , 10220, chi-squared
test; Fig. 4b). This depletion is even stronger for larger disruptions
which would be expected to be less tolerated (Extended Data Fig. 10e).
Additional genomic features associated with riboSNitches are also found
(Extended Data Fig. 10f, Supplementary Table 6). RiboSNitches are also
significantly depleted around predicted miRNA target sites (P , 1025,
chi-squared test; Fig. 4c) and RNA binding protein (RBP) binding sites
(P 5 0.004, chi-squared test). However, depletion of riboSNitches varies
for each individual RBP (Fig. 4d), suggesting that different RBPs may
have different RSS requirements for binding. RiboSNitches may also
influence gene regulation through splicing. Indeed, riboSNitches near
splice junctions are associated with greater alternative splicing changes
(defined as percentage spliced in (PSI)14,15; Fig. 4e), suggesting that RNA
structures could regulate splicing.
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Figure 2 | RSS signatures of post-transcriptional regulation. a, Average
PARS score and GC content across transcript exon–exon junctions. b, Average
PARS score (top) and PARS score difference (bottom) across miRNA sites
for AGO-bound (red) versus non-AGO-bound sites (grey). Structurally
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In summary, the landscape and variation of RSS across human
transcriptomes suggest important roles of RNA structure in many
aspects of gene regulation. We provide the experimental and analytical
frameworks to evaluate SNVs that change RSSs, and demonstrate poten-
tially much broader roles for riboSNitches in multiple steps of post-
transcriptional regulation. In the future, use of high resolution, in vivo
probes of RSSs16 and studies of many individuals of diverse genetic
backgrounds may allow systematic determination of functional RSSs
across the transcriptome.

METHODS SUMMARY
Sample preparation and structure probing for human renatured RNAs.
Human lymphoblastoid cell lines GM12878, GM12891 and GM12892 were obtained
from Coriell. Total RNA was isolated using TRIzol reagent (Invitrogen) and polyA
selected as described previously2. Two micrograms of Poly(A)1 RNA was structure
probed at 37 uC using RNase V1 (Life Technologies, final concentration of 1025

units per ml) or S1 nuclease (Fermentas, final concentration of 0.4 units per ml) at
37 uC for 15 min.
Sample preparation and structure probing for human native deproteinized
RNAs. GM12878 cells were lysed in lysis buffer (150 mM NaCl, 10 mM MgCl2, 1%
NP40, 0.1% SDS, 0.25% Na deoxycholate, Tris pH 7.4) on ice for 30 min. The lysate
was deproteinized by phenol chloroform extractions. Total RNA (1 mg per 90 ml)
was incubated in 1 3 RNA structure buffer at 37 uC for 15 min and structure
probed using RNase V1 (final concentration of 2 3 1025 units per ml) and S1
nuclease (final concentration of 0.2 units per ml) at 37 uC for 15 min.
Library construction and analysis. The structure probed RNA was cloned using
Ambion RNA-Seq Library Construction Kit (Life Technologies)2, and sequenced
using Illumina Hi-seq. The reads were trimmed and mapped to UCSC RefSeq and
the Gencode v12 databases (hg19 assembly) using the software Bowtie2 (ref. 17).

Double (V1) and single-stranded reads (S1) for each sequencing sample were
normalized by sequencing depth.
RiboSNitch analysis. Data normalization for each sample was performed by
calculating standard deviation (s.d.) for each transcript and dividing the PARS
score per base by the s.d. of that transcript. We defined a structure difference of the
ith base of transcript j between conditions m and n in this formula, where PARS
represents the normalized PARS score, abs represents absolute value, and k repre-
sents the kth base of the transcript:

StrucDiff i,j,m,n~
Xk~iz2

k~i{2

abs(PARSk,j,m{PARSk,j,n)

5

Online Content Any additional Methods, Extended Data display items and Source
Data are available in the online version of the paper; references unique to these
sections appear only in the online paper.
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Figure 4 | Genetic evidence for functional RSS elements in the
transcriptome. a, Schematic of RSS selection test: mutations that do
not change the shape of an important RNA structure may be tolerated
and accumulates (left), but a riboSNitch that changes RNA shape will be
evolutionarily selected against and removed. Brown arrows, alleles that were
present before and after selection for RNA shape. b–d, Selective depletion of
riboSNiches versus structurally synonymous SNVs at 39 UTRs (b); predicted
miRNA target sites (c); specific RBP binding sites (d). P value is calculated
using chi-square test. e, RiboSNitches impact splicing. PSI score is calculated to
be the ratio of alternatively spliced isoform versus total isoforms (Methods),
P 5 0.0006, Student’s t-test. Error bars show mean 6 s.e.m.
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METHODS
Sample preparation for renatured RNA structure probing. Human lympho-
blastoid cell lines GM12878, GM12891 and GM12892 were obtained from Coriell.
Total RNA was isolated from lymphoblastoid cells using TRIzol reagent (Invitrogen).
Poly(A)1 RNA was obtained by purifying twice using the MicroPoly(A)Purist kit
(Life Technologies). The Tetrahymena ribozyme RNA was in vitro transcribed using
the T7 RiboMax Large-scale RNA production system (Promega) and added into
2mg of poly(A)1 RNA (1% by mole) for structure probing and library construction.
Structure probing of renatured poly(A)1 RNA. Two micrograms of Poly(A)1

RNA in 160 ml of nuclease free water was heated at 90 uC for 2 min and snap-
cooled on ice for 2 min. Twenty microlitres of 10 3 RNA structure buffer (150 mM
NaCl, 10 mM MgCl2, Tris, pH 7.4) was added to the RNA and the RNA was slowly
warmed up to 37 uC over 20 min. The RNA was then incubated at 37 uC for 15 min
and structure probed independently using RNase V1 (Life Technologies, final con-
centration of 1025 units per ml) or S1 nuclease (Fermentas, final concentration of
0.4 units per ml) at 37 uC for 15 min. The cleavage reactions were inactivated using
phenol chloroform extraction.
Structure probing and ribosomal RNA depletion for native deproteinized
RNA structure probing. GM12878 cells were lysed in lysis buffer (150 mM
NaCl, 10 mM MgCl2, 1% NP40, 0.1% SDS, 0.25% Na deoxycholate, Tris, pH 7.4)
on ice for 30 min. The chromatin pellet was removed by centrifugation at 16,000g
for 10 min at 4 uC. The lysate was deproteinized by passing through two phenol
followed by one chloroform extractions. The concentration of RNA in the depro-
teinized lysate was measured using the Qubit fluorometer (Invitrogen). We diluted
the RNA to a concentration of 1 mg per 90 ml using 1 3 RNA structure buffer
(150 mM NaCl, 10 mM MgCl2, Tris, pH 7.4) and incubated the RNA at 37 uC for 15
min. The native deproteinized RNA was structure probed independently using
RNase V1 (final concentration of 2 3 1025 units per ml) and S1 nuclease (final
concentration of 0.2 units per ml) at 37 uC for 15 min.

To compare structural differences between renatured and native deproteinized
RNAs, we independently prepared an RNA sample that was similarly lysed and
deproteinized. After removal of proteins, we ethanol precipitated the RNA and
dissolved it in nuclease free water. We diluted the RNA to a concentration of 1 mg
per 80 ml in water and heated the RNA at 90 uC for 2 min before snap-cooling the
RNA on ice. We added 10 3 RNA structure buffer and renatured the RNA by
incubating it at 37 uC for 15 min and performed structure probing similarly as in
native deproteinized RNAs.

The cleavage reactions were inactivated using phenol chloroform extraction and
DNase treated before undergoing ribosomal RNA depletion using Ribo-Zero
Ribosomal RNA removal kit (Epicentre).
Validation of riboSNitches by manual footprinting. We cloned approximately
200 nucleotide fragments of both alleles of MRPS21, WSB1, HLA-DRB1, HLA-DQA1,
hnRNP-AB, HLA-DRA, LDHA, XRCC5 and FNBP1 from GM12878, GM12891 and
GM12892 using a forward-T7-gene-specific primer and a reverse-gene-specific
primer. All constructs were confirmed by sequencing using capillary electropho-
resis. DNA from each of the different clones was then in vitro transcribed into
RNA using MegaScript Kit from Ambion, following manufacturer’s instructions.

Two picomoles of each RNA is heated at 90 uC for 2 min and chilled on ice for
2 min. 3.33 3 RNA folding mix (333 mM HEPES, pH 8.0, 20 mM MgCl2, 333 mM
NaCl) was then added to the RNA and the RNA was allowed to fold slowly to 37 uC
over 20 min. The RNA was then structure probed with either DMS (final concen-
tration of 100 mM) or 2-methylnicotinic acid imidazolide (NAI) (final concen-
tration of 100 mM)16 at 37 uC for 20 min or structure probed with S1 nuclease
(final concentration of 0.4 units per ml) or RNase V1 (final concentration of 0.0001
units perml) at 37 uC for 15 min. The DMS structure probed samples were quenched
using 2-mercaptoethanol before phenol chloroform extraction. The NAI and nucle-
ase treated samples were phenol chloroform extracted directly after structure prob-
ing. The structure probed RNA was then recovered through ethanol precipitation.
The RNA structure modification/cleavage sites were then read out using a radio-
labelled RT primer by running onto denaturing PAGE gel as described previously18.
Library construction. The structure-probed RNA was fragmented at 95 uC using
alkaline hydrolysis buffer (50 mM Sodium Carbonate, pH 9.2, 1 mM EDTA) for
3.5 min. The fragmented RNA was then ligated to 59 and 39 adapters in the Ambion
RNA-Seq Library Construction Kit (Life Technologies). The RNA was then treated
with Antarctic phosphatase (NEB) to remove 39 phosphates before re-ligating
using adapters in the Ambion RNA-Seq Library Construction Kit (Life Techno-
logies). The RNA was reverse-transcribed using 4 ml of the RT primer provided
in the Ambion RNA-Seq Library Construction Kit and polymerase chain reaction
(PCR)-amplified following the manufacturer’s instructions. We performed 18
cycles of PCR to generate the complementary DNA library.
Illumina sequencing and mapping. We performed paired end sequencing on
Illumina’s Hi-Seq sequencer and obtained approximately 400-million reads for
each paired end lane in an RNase V1 or S1 nuclease library. Obtained raw reads

were truncated to 50 bases, (51 bases from the 39 end were trimmed). Trimmed
reads were mapped to the human transcriptome, which consists of non-redundant
transcripts from UCSC RefSeq and the Gencode v12 databases (hg19 assembly),
using the software Bowtie2 (ref. 17). We allowed up to one mismatch per seed
during alignment, and only included reads with perfect mapping or with Bowtie2
reported mismatches on positions annotated as SNVs in genetically modified cells.
We obtained 166- to 212-million mapped reads for an RNase V1 or S1 nuclease
sample.
PARS-score calculation. After the raw reads were mapped to the transcriptome,
we calculated the number of double-stranded reads and single-stranded reads that
initiated on each base on an RNA. The number of double (V1) and single stranded
reads (S1) for each sequencing sample were then normalized by sequencing depth.
For a transcript with N bases in total, the PARS score of its ith base was defined by
the following formula where V1 and S1 are normalized V1 and S1 scores, respect-
ively. A small number 5 was added to reduce the potential over-estimating of
structural signals of bases with low coverage:

PARSi~1:::N~ log2 (V1iz5){ log2 (S1iz5)

To identify structural changes caused by SNVs, we applied a 5-base average on the
normalized V1 and S1 scores to smoothing the nearby bases’ structural signals;
therefore, the PARS score is defined as:

PARSi~1:::N~ log2 (
Xj~iz2

j~i{2

V1jz5

5
){ log2 (

Xj~iz2

j~i{2

S1jz5

5
)

Bases with both high V1 and S1 scores, and transcripts with multiple con-
formations. Bases with both strong single- and double-strand signals are poten-
tially present in multiple conformations. We first normalized all bases with
detectable S1 or V1 counts by their sequencing depth. We then calculated an S1
ratio and a V1 ratio by normalizing S1 (and V1) counts to the transcript abund-
ance. S1 and V1 ratios indicate the relative strength of single and double signals
respectively. We then ranked all the bases by their S1 ratio and V1 ratio indepen-
dently, and used the top one-million S1 ratio bases and the top one-million V1
ratio bases as high S1 ratio bases and high V1 ratio bases, respectively. We defined
a base as being in multiple conformations if the base has both high S1 and high V1
ratios. If a transcript contains more than five multi-confirmation bases, this tran-
script is defined as a multi-confirmation transcript.
V1 replicates correlation analysis. Pearson correlation of RNase V1 replicates on
GM12878 was performed using a parsV1 score (a value that uses the V1 score only
to represent secondary structure) defined as:

parsV1i~1::N~ log2 (V1iz5)

Structure differences between AGO PAR-CLIP bound and not bound tran-
scripts. Predicted conserved and non-conserved miRNA target sites of conserved
miRNA families were obtained from TargetScan19. AGO PAR-CLIP (photoacti-
vatable ribonucleoside-enhanced crosslinking and immunoprecipitation) data set
in Epstein–Barr virus (EBV)-transformed lymphoblastoid cells was obtained from
ref. 7. For 11 of the most abundant miRNAs that were expressed in the 4 lines of
EBV transformed lymphoblastoid cells, we asked whether the predicted target site
fell within the AGO CLIP clusters. Predicted target sites that resided within the
PAR-CLIP clusters were considered as AGO-bound, whereas the rest were con-
sidered as non-AGO-bound. The non-AGO-bound transcripts are further con-
trolled to fall within 25 and 75% of 39 UTR length, mRNA abundance and CpG
dinucleotide content of the AGO-bound transcripts. The PARS scores for AGO-
bound and non-bound transcripts were aligned to the start (either 27 or 28
position of the miRNA) of the miRNA:target binding site and averaged. P values
of structural changes were calculated using the Wilcoxon rank-sum test.
AGO-iCLIP library generation. AGO iCLIP was performed as described previously20

with the following modifications: 2 3 107genetically modified cells (per biological
replicate) were collected under log-phase growth and washed once in ice-cold
1 3 PBS. The pellet was resuspended in 10 3 pellet volumes of ice-cold 1 3 PBS
and plated out on 10-cm tissue-culture dishes. Cells were crosslinked with ultra-
violet radiation at 254nm for 0.3 J cm22, collected in ice-cold PBS and cell pellets
were frozen on dry ice. Lysate preparation, RNaseA, and immunoprecipitation
of AGO were performed as described previously21 using the anti-AGO antibody
(clone 2A8, Millipore). To produce iCLIP libraries, on-bead enzymatic steps and
off-bead final-library preparation was performed as described previously21. AGO-
iCLIP libraries were produced in biological duplicates for each individual (GM12891,
GM12892 and GM12878), barcoded, and pooled for sequencing. Samples were
single-end-sequenced for 75 bases on an Illumina HiSeq2500 machine.
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Processing of AGO-iCLIP data. Raw sequencing reads were preprocessed using
FASTX-Tookit before alignment was performed. Sequencing adaptor was trimmed
off using fastx_clipper and low-quality reads were filtered using fastq_quality_filter.
PCR duplicates were further removed using the program fastq_collapser. Preprocessed
reads were aligned to hg19 genome assembly using Bowtie22, and AGO–RNA
crosslinking positions were obtained through self-generated script passing through
the sequence alignment/map (SAM) file. AGO-RNA binding signal was smoothed
by extending 6 10 bases around the crosslinking position, and signals from both
replicates were normalized by sequencing depth. AGO–RNA per-base enrichment
was defined as the minimum signal of the replicates divided by the corresponding
RNA abundance.

To identify miRNA predicted sites for miRNAs that are expressed in GM12878
cells, we downloaded the small RNA sequencing data from the ENCODE consor-
tium (GEO accession number GSM605625), and aligned the raw reads to the human
miRNA database using Blastn. We estimated the amount of miRNA expression by
counting the Blastn perfect matches for each miRNA. Predicted miRNA target
sites from the top 100 highest expressed miRNA were then aligned to the miRNA–
target binding sites and were separated into two groups: 0 predicted sites with an
average PARS score of less than 21 (from 23 to 1 of the miRNA–target pair) were
classified as single-stranded sites, whereas those with an average PARS score of
greater than 1 (from 23 to 1 of the miRNA–target pair) were classified as double-
stranded sites. We then calculated the average AGO-iCLIP enrichment score for
the two groups of miRNA binding sites (from 225 to 25 bases), and estimated the
significance of their difference using the Student’s t-test.
miRNA-target downregulation in Hela cells. Average gene expression changes
upon expression of miR142 or miR148 in HeLa cells were obtained from Grimson
et al. by averaging the gene expression changes induced by the miRNA at 12 h and
24 h of overexpression9. For the miR142 or miR148 Targetscan predicted miRNA
sites, we calculated the average PARS score across 23 to 11 (from the start of the
miRNA–target pair) and sorted the predicted sites according to their structural
accessibility. The P value for difference in downregulation of transcripts that contain
the top 100 accessible sites versus transcripts that contain the bottom 100 acces-
sible sites was calculated using Wilcoxon rank-sum test.
RiboSNitch analysis. RNAs with known secondary structures were doped into
the initial RNA pool as positive controls to estimate the baseline changes in RNA
structure in PARS. We calculated the PARS scores for all the bases in the tran-
scripts and performed data normalization in order to compare directly secondary
structures between different individuals. To normalize the data, we calculated the
standard deviation (s.d.) for each transcript and divided the PARS score per base
by the s.d. of that transcript. This resulted in a normal distribution of PARS scores
for each transcript in each individual and enabled us to calculate the change in
PARS scores due to SNVs by subtraction of PARS scores between the individuals.
Since a true structure change is likely to extend beyond a single base, we define a
structure difference of the ith base of transcript j between conditions m and n in
this formula, where PARS represents the normalized PARS score:

StrucDiff i,j,m,n~
Xk~iz2

k~i{2

abs(PARSk,j,m{PARSk,j,n)

5

We calculated the StrucDiff for all the bases in all the transcripts between each pair
of individuals: GM12891 and GM12892, GM12891 and GM12878, GM12892 and
GM12878. To identify riboSNitches, we downloaded SNV annotations from
HapMap project23, and then converted SNV annotations from hg18 assembly to
hg19 assembly using UCSC executable LiftOver. We then overlaid the hg19 SNV
coordinates with our transcriptome annotation, a non-redundant combination of
RefSeq and Gencode v12 transcriptome assembly, to identify the positions in the
transcriptome that have SNVs. For highly confident detection of structural changes,
we require that the sequencing coverage around SNV is dense, such that: first, the
SNV is located on a transcript whose average coverage is greater than 1 (on average
one read per base); and second, the average coverage in a 5-base window centred
around the SNV is greater than 10 (average S1 1 V1 $ 5). We exclude bases that
fall within 100 nucleotides from the 39 end of all the transcripts due to the blind tail
of 100 nucleotides.

To identify SNVs with statistically significant changes in structure, we estimated
a global baseline of structural change by calculating the fold differences between
the doping control and SNV cumulative frequencies. We calculated a z-score for
each detected SNV: z 5 (StrucDiff2 mean)/(s.d. of doped in controls). We used
the Tetrahymena ribozyme as the doped in control. We noticed that a StrucDiff $ 1
is equivalent to a z-score $ 4.5 and a 100-fold difference between the SNV and
doping control cumulative frequencies. To calculate the P value for the structural
change at each detected SNV, we performed 1,000 permutations on the absolute
values of the non-zero d PARS scores within each transcript that contains SNV.
This P value is an estimate of the likelihood that a 5-base average of the permutated

PARS structural change is greater than the 5-base average of the SNV base’s
structural change. The false discovery rate (FDR) of the significance of the struc-
tural change at the SNV site is estimated by a multi-hypothesis testing performed
using the p.adjust function in R. A SNV is defined as a riboSNitch if: first, its
StrucDiff is greater than 1 (equivalent to z-score $ 4.5 and 100-fold cumulative
frequency difference); second, its P value is less than 0.05 and FDR less than 0.1;
and third, local read coverage greater than 10 and at least 3 out of 11 bases contain
S1 or V1 signals in an 11-base sliding window centred by the SNV site. We also
permutated the structural changes between the trio by shuffling the StrucDiffs
within every transcript. After structural PARS scores were permutated, we iden-
tified only 16 riboSNitches based on the exact same aforementioned methods and
thresholds. This number is less than 1% of the original number of riboSNitches
found, indicating that most of the discovered riboSNitches are not random noise.
RiboSNitch noise and signal estimation. We estimated the amount of structural
change between two replicates with the same sequence and compared it to the
change in two replicates with differing sequences. For example, the father may
have heterozygous alleles A and C at a particular locus, whereas the mother has the
alleles C and C and the child has alleles A and C at the same locus. As the local
genotype of the father is the same as that of the child, we can calculate the amount
of structure change between that of the father and child (d1, noise). If this SNP was
predicted to be a riboSNitch, then the local structural change between the father
and mother (d2, signal) should be significantly greater than the noise. We took all
the heterozygous riboSNitches we predicted that satisfy the above-mentioned
pattern (861, 558 and 519 SNVs between three pairs of individuals in the trio),
and calculated the absolute structure change in a 21-nucleotide window centred
on the riboSNitch. Plotting signal (d2) and noise (d1) windows across these ribo-
SNitches demonstrated that on average, the signal plot has threefold greater struc-
ture changes than that of the noise plot (P 5 7.94 3 102177, Student’s t-test),
indicating that the riboSNitches that we identified clearly distinguishes from the
biological noise.

As a further control, we generated two additional biological replicates of PARS
with RNase V1 from refolded RNA of the child, and obtained 70–110-million
mapped reads for each sample. As expected, biological replicates of the same
individual are better correlated than between individuals. No difference in vari-
ance was detected at riboSNitch neighbourhoods versus other sites, or when 59

UTRs and CDSs were compared against 39 UTRs. These results indicate that ribo-
SNitches are not simply passenger mutations residing in structurally flexible or
poorly measured regions.
Estimation of structural disruption at the gene level. The extent of structural
disruption of a transcript is estimated by an eSDC (experimental structural dis-
ruption coeffiency) score that is defined as:

eSDC~(1{cc)|
ffiffi
l
p

where cc is a Pearson correlation of the transcript between two samples, and l is the
length of that transcript10. The greater the eSDC is, the more disrupted the tran-
script is.
RiboSNitch allele-specific cross-validation. We first generated an allele-specific
sequence reference for the lymphoblastoid cells by compiling 150-base sequence
fragments (50 bases upstream and 100 bases downstream of the SNV) of both
wild-type and mutant alleles. We then built Bowtie indexes using this reference,
and mapped trimmed raw reads from GM12878 (child) to the indexes. We only
accepted reads with perfect match to the wild-type or mutant sequences and
calculated S1, V1 and PARS score as described above. We examined riboSNitches
that were homozygous in both GM12891 (father) and GM12892 (mother), and
that had both alleles detected as expressed in GM12878 (child). A riboSNitch is
considered as cross-validated if the structural change between the two detected
alleles in the child follows the same direction as the structural changes between the
two alleles in the parents. Out of 184 homozygous riboSNitches in the parents, 117
of these riboSNitches can be cross-validated in the child (63.6%). Allele-specific
cross-validation using the child’s native deproteinized data was also performed as
above.
RiboSNitch and microRNA RBP and splicing. Predicted miRNA-target sites
(both conserved and nonconserved targets of conserved miRNA families) were
downloaded from Targetscan. RBP clip data sets were downloaded from the doRiNA
database24. In addition, CLIP sequencing data sets for LIN28 were from ref. 25, and
for DGCR8 were from ref. 26.
RiboSNitch and splicing analysis. We defined a percent inclusion (percentage
spliced in, PSI) value similarly to a previous paper15. We considered every internal
exon in each annotated transcript as a potential ‘cassette’ exon. Each cassette
alternative-splicing event is defined by three exons (C1, A and C2, where A is the
alternative exon, C1 is the 59 constitutive exon and C2 is the 39 constitutive exon);
two constitutive junctions (C1A (connecting exons C1 and A) and AC2 (connecting
exons A and C2)); and one alternative (or ‘skipped’) junction (C1C2 (connecting
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exons C1 and C2)). First, we constructed a reference library containing unique,
non-redundant constitutive and alternative junction sequences that are based on
exon annotations and their RNA sequences. These junction sequences were con-
structed such that there is a minimum five-nucleotide overlap between the mapped
reads and each of the two exons involved. Each junction sequence was annotated
with a gene name and exon indexes for downstream analysis. As we trimmed the
sequencing raw reads to 50 bases, we created a junction sequence library, indexed
using Bowtie-build22, using junction sequences of 90 bases. We downloaded inde-
pendent RNA sequencing data from the ENCODE consortium (GM12878, GM12891
and GM12892) to estimate the PSI differences between samples. Raw reads were
trimmed to 50 bases and then aligned to the non-redundant junction sequences
using Bowtie22, with unique mapping (the -m option in Bowtie 5 1) and allowing a
maximum of two mismatches. The number of reads that were uniquely mapped to
a junction sequence, corresponding to the junction’s effective number of mappable
reads, was calculated by an in-house generated script. We then counted the num-
ber of reads that were uniquely mapped to each junction C1A, AC2 and C1C2,
respectively. The PSI value for each internal exon was defined as:

PSI~100|
average(C1A,AC2)

C1C2zaverage(C1A,AC2)

where C1A, AC2 and C1C2 are the normalized read counts for the associated junctions.
We calculated PSIs for all of the internal exons in the samples GM12891,

GM12892 and GM12878 and calculated the change in PSI between each pair of
samples. Out of 12,233 transcribed SNVs, 498 SNVs were found in internal exons
with PSI differences in the trio, and 169 SNVs were located within 20 nucleotides
of the splicing sites. We ranked these 169 SNVs by the degree of their structural
changes (StrucDiff score), and found that the exons containing SNVs with higher
StrucDiff scores (StrucDiff . 1) show greater PSI differences than those exons
containing SNVs with lower StrucDiff scores (StrucDiff , 1).
RiboSNitch and local structure environments. We defined bases of PARS scores
greater than 1 as double-stranded (D), PARS scores of less than 21 as single
stranded (S), and PARS scores between 21 and 1 as poised region (.). Using these
cutoffs, we classified local structures around a SNV site into different categories
(for example, S.D, DDD), and the average PARS-score changes for riboSNitches
under different local structure categories were analysed.
RiboSNitch and SNV densities in flanking regions. We calculated the average
number of SNVs within a certain distance to a riboSNitches using SNV annotation

from the 1000 Genome Project. We also made the same calculation on 2,450 non-
structural changing SNV sites as negative control. We used the Kolmogorov–
Smirnov test to determine whether the two distributions are significantly different.
RiboSNitches predicted by SeqFold using PARS scores. For each SNV we used
SeqFold to predict RNA secondary structure for a transcript fragment of 151
nucleotides (50 nucleotides upstream to 100 nucleotides downstream of the
SNV sites). We used the PARS scores from allele-specific mapping as input to
SeqFold. We then compared the SeqFold predicted structures for the different
alleles at the SNV site. Green and red circles indicate bases with PARS scores # 21
and $ 1, respectively.
Enrichment of SNVs in genomic features. We compared different genomic
features or annotations of 993 unique riboSNitches to 1,009 control SNVs. For
each genomic annotation, the fraction of riboSNitches that are inside the genomic
region covered by the annotation (for example, histone mark) was compared to the
fraction of control SNVs by Student’s t-test. The different genomic annotations
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