
1

Briefings in Bioinformatics, 22(5), 2021, 1–13

https://doi.org/10.1093/bib/bbab085
Problem Solving Protocol

WEDGE: imputation of gene expression values from
single-cell RNA-seq datasets using biased matrix
decomposition

Yinlei Hu†, Bin Li†, Wen Zhang, Nianping Liu, Pengfei Cai, Falai Chen and
Kun Qu
Corresponding authors: Kun Qu, Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National
Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and
Technology of China, Hefei 230027, China, Tel.: +86-551-63606257; E-mail: qukun@ustc.edu.cn; Falai Chen, School of Mathematical Sciences, University of
Science and Technology of China, Hefei 230026, China, Tel.: +86-551-63607537; E-mail: chenfl@ustc.edu.cn.
†These authors contributed equally to this work.

Abstract

The low capture rate of expressed RNAs from single-cell sequencing technology is one of the major obstacles to downstream
functional genomics analyses. Recently, a number of imputation methods have emerged for single-cell transcriptome data,
however, recovering missing values in very sparse expression matrices remains a substantial challenge. Here, we propose a
new algorithm, WEDGE (WEighted Decomposition of Gene Expression), to impute gene expression matrices by using a
biased low-rank matrix decomposition method. WEDGE successfully recovered expression matrices, reproduced the
cell-wise and gene-wise correlations and improved the clustering of cells, performing impressively for applications with
sparse datasets. Overall, this study shows a potent approach for imputing sparse expression matrix data, and our WEDGE
algorithm should help many researchers to more profitably explore the biological meanings embedded in their single-cell
RNA sequencing datasets. The source code of WEDGE has been released at https://github.com/QuKunLab/WEDGE.
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Introduction
Single-cell RNA sequencing technology (scRNA-seq) can detect
gene expression information at single-cell resolution. In recent
years, many different scRNA-seq methods have emerged [1]. The
differences among them lie in how the original transcripts are
labeled and used to generate a sequencing library, which leads to
their different detection efficiencies. For plate-based scRNA-seq
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techniques such as SMART-seq2 and CEL-seq2, the throughput
(i.e. the number of cells captured in a single experiment) can be
hundreds of cells, and for bead-based techniques such as 10X
Chromium and Drop-seq, the throughput can reach thousands
or even tens of thousands of cells ([1]; Supplementary Tables S1
and S2). scRNA-seq technology has been widely used in studies
on many biological systems, including (but not limited to)
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Algorithm 1. Optimization of WEDGE

Step 1: generate the initial H ∈ R
+
r×n from singular value decomposition.

Step 2: from a given H, solve W in parallel with a non-negative least-square method.
Step 3: from the W obtained in step 2, calculate a new H.
Step 4: iteratively return back to steps 2 and 3 until the relative difference in the object function between two adjacent loops is <1 × 10−5

or the maximum specified number of iterations is reached.

Algorithm 2. Estimating the rank of the expression matrix

Input: the singular values of matrix A: σ1 ≥ σ2 ≥ σ3 ≥ · · · ≥ σmin(m,n)

Output: the final rank retained for A: r
Algorithm:

r = 1;
while f (σr) and r ≤ min(m, n) − 11 do

r = r + 1;
end while

embryonic development [2–4], neuronal diversity [5–7], the
immune system [8–10] and a large variety of diseases
[11–15].

Despite the rapid increase in the applications of scRNA-
seq technology, the number of detected genes per cell is still
limited by technical challenges [16–19]. In single-cell sequenc-
ing experiments, a large amount of mRNA is lost during the
cDNA generation process, and only a small amount of cDNA is
amplified [20]. These technical deficiencies can result in dropout
events, in which a gene is not detected in some cells even though
it is expressed. Dropout events lead to a problem: many zero
elements in the gene expression matrix are false zeros [21] that
do not represent the true expression level of the genes in the
cells [18, 22, 23]. To overcome this, a variety of algorithms have
been developed to impute the zero elements in the expression
matrices in order to restore the expression of the corresponding
genes [21, 23–30].

For example, MAGIC [28] recovers gene expression by using
data diffusion to construct an affinity matrix which attempts
to represent the neighborhood of similar cells. Huang et al.
combined Bayesian and Poisson Least Absolute Shrinkage
and Selection Operator regression methods into SAVER [25] to
estimate prior parameters and to restore missing elements of
an expression data matrix, based on the assumption that gene
expression follows the negative binomial distribution. Recently,
they upgraded this approach to SAVER-X [30] by training a deep
autoencoder model with gene expression patterns obtained
from public single-cell data repositories. Eraslan et al. developed
a deep neuron network model, DCA [23], which can denoise
scRNA-seq data by learning gene-specific parameters. Many
other tools have also emerged recently, such as SCRABBLE
[27], VIPER [21], ENHANCE [29], ALRA [26], scImpute [31], scVI
[32], DrImpute [33] and netNMF-sc [24], each of which seeks
to improve recovery of the expression matrix for single-cell
data (Supplementary Table S3). However, it is still a challenge
to abundantly recover gene expression data while avoiding
over-imputing [22, 24].

Here, we introduce a new algorithm, WEDGE, to impute
gene expression values for sparse single-cell data based on
low-rank matrix decomposition [34–36]. We applied WEDGE to
multiple scRNA-seq datasets and compared its performance
against several state-of-the-art methods. We also examined

WEDGE’s ability to distinguish cell subpopulations in the
Tabula Muris dataset [37], and assessed its performance for
accurately imputing marker gene expression in recently released
datasets for peripheral blood mononuclear cells (PBMCs) from
coronavirus disease 2019 (COVID-19) patients [38, 39]. Finally,
we assessed the computer resources WEDGE consumes when
analyzing large datasets.

Methods
Imputation model of WEDGE

WEDGE takes an expression matrix Am×n as input, where the
element aij represents the expression of the ith gene in the
jth cell. By default, it normalizes the total expression of each
cell to 10 000, and updates the expression value by perform-
ing a logarithm on it, i.e. aij = log(

aij×10 000∑
i aij

+ 1). After impu-

tation, WEDGE outputs two non-negative matrices, W and H;
we can then take their matrix product as the final imputed
expression matrix, V. In the WEDGE algorithm, we imputed
single-cell sequencing data through the following optimization
framework:

Obj = min
W,H

∑
i,j∈Ω

∣∣aij − vij

∣∣2 + λ
∑

ij∈Ω

∣∣vij

∣∣2

subject to vij = ∑r
k=1 wikhkj, H ∈ R

+
r×n, W ∈ R

+
m×r,

(1)

where Ω = {(i, j)|aij > 0, i = 1 ∼ m, j = 1 ∼ n}, Ω is the
complementary set of Ω when the universe is {(i, j)|i = 1 ∼ m, j =
1 ∼ n}, vij is the element of the ith row and jth column of V, wik

represents the element of matrix W and hkj is the element of
matrix H. In this model, the first term in the objective function
guarantees minimization of approximation error between the
nonzero elements of the original matrix A and the corresponding
elements in the imputed matrix V, whereas the second term
tends to minimize the elements in V which correspond to zero
elements in A. The non-negative constraints in model (1) ensure
that all the entries of V are non-negative.

Users can tune the bias parameter λ ∈ [0, 1] to balance the
contributions of the two terms of the objective functions. We
set λ = 0.15 for all the datasets used in this study, which is also
the default value for WEDGE. For more analysis on how to set λ

value, users can refer to the second paragraph of the Discussion
section.

Optimization of the model

In the WEDGE algorithm, the matrix W and H were separately
considered, which means that we fixed H to optimize W, and
then fixed W to generate the new H. First, we defined that gi is
the ith row of A, H+

i and H0
i are composed of the H columns that

correspond to the nonzero and zero elements of gi respectively,
and g+

i is the vector after deleting all zero elements from gi. Then
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we rewrote the objective function of solving W, as,

min
wi

∥∥wiH+
i − g+

i

∥∥2
2 + λ

∥∥wiH0
i

∥∥2

2 = min
wi

∥∥∥wiH̃i − gi

∥∥∥2

2
(2)

whereH̃i is the combination of H+
i and λH0

i according to the
original order of their elements in H, and wi is the ith row of W. In
this case, optimizing W is equivalent to solving m non-negative
least-squares problems (2) in parallel [40]. After W was obtained,
we fixed it and solved H using similar algorithm as described
above.

Estimating the rank of the expression matrix

During the optimization process for WEDGE, we designed a
heuristic algorithm to determine the rank of Am×n based on the
relative variation of its singular values {σi : i = 1 ∼ min(m, n)}. For
a descending list of λi, we defined a function f (σi) as

f (σi) =
{

0, if σi−σi+1
σi+1

≥ ε and
σi+p−σi+p+1

σi+p+1
< ε for p ∈ [1, 10] ,

1, otherwise,
(3)

where ε is a small non-negative constant (0.085 by default).
In Algorithm 2 we provided the details of the process for the
evaluation of rank r:

Correlation matrix distance

Correlation matrix distance (CMD) is usually used to determine
the difference between two correlation matrices. It denotes the
error of imputation process [25, 30], as a larger CMD value
indicates greater difference between the reference/raw matrix
and the imputed matrix. The CMD of two correlation matrices
R1 and R2 is expressed as d(R1, R2) = 1 − tr(R1R2)

‖R1‖f ‖R2‖f
, where tr(R1R2)

represents the trace of matrix R1 ∗ R2 and ‖ · ‖f is the Frobenius
norm of a matrix.

Jaccard index

The Jaccard index can be used to evaluate the similarity between
two clusters [41]. The Jaccard index of two clusters A and B is
defined as r = |A∩B|

|A∪B| , here | · | represented the number of elements
in a set.

Expression bias

The expression bias of gene α in cell clusterCi refers to the
proportion of cells (in clusterCi) whose expression level of gene
α is higher than the average expression of other clusters:

EB (α, Ci) = 1
N (Ci)

∑
k∈Ci

δ
[
E

(
α, k

) − E
(
α, k′ /∈ Ci

)]

where k is a cell belonging to cluster Ci, E(α, k) is the expression
value of gene α in cell k, k′ is a cell belonging to other clusters,
E(α, k′ /∈ Ci) is the average expression value of gene α in all other
clusters, N(Ci) is the number of cells in cluster Ci and δ function
is defined as

δ(x) =
{

1 if x > 0
0 if x ≤ 0

Generation of the simulated scRNA-seq datasets

We used the splatSimulate() function in the Splatter R package
[42] to generate simulated datasets. For the dataset containing 6
cell types, 500 genes and 2000 cells (shown in Figure 1B and C
and Supplementary Figure S1), we set seed = 42 and dropout.
Shape = −1, and the down-sampling rate was tuned by parameter
dropout. Mid values ranging from 1 to 6. For the dataset D1 with 2
cell types, 200 genes and 2000 cells (shown in Supplementary Fig-
ure S2A), we set seed = 42 and dropout. Shape = −1 and dropout.
Mid = 2. For the dataset D2 with 3 cell types, 200 genes and 2000
cells (shown in Supplementary Figure S2B), we set seed = 42 and
dropout. Shape = −1 and dropout. Mid = 4.

Processing of different datasets

For Zeisel et al.’s dataset of the mouse cortex and hippocam-
pus cells (GSE60361) [7], we generated a reference dataset that
contains high quality cells and genes (performed identically
with the previously described filtering step of SAVER [25]), and
retained all of the marker genes described in the initial study
(Tbr1, Spink8, Aldoc, Gad1, Mbp and Thy1). Then, we randomly set
85% of the nonzero elements of the reference data to zeros to
generate observed data with dropouts. For Baron et al.’s dataset
of human pancreatic islet cells (GSE84133) [43], we also used
the same process to filter the high quality cells and genes
from the original data to build the reference dataset, in which
54% of the elements had nonzero values. We then randomly
set 65% of the nonzero elements to zeros to simulate dropout
events. For Tabula Muris dataset (GSE109774; [37]), we applied
the pipeline provided by Tabula Muris to filter the genes and
cells, and obtained an expression matrix with 23 341 genes and
55 656 cells. For Guo et al.’s COVID-19 dataset, we filtered genes
and cells using the same method as Guo et al., to obtain an
expression matrix containing 23 324 genes and 68 190 cells. For
the COVID-19 dataset released by Schulte-Schrepping et al. [39],
we used the same preprocessing method as the original paper
to obtain a gene expression matrix containing 46 584 genes and
99 049 cells.

Scalability analysis

Scalability analysis was performed on a super computer with
four Intel Xeon E7-8860 v4 2.20 GHz CPUs (72 cores in total)
and 1TB memory. We down-sampled the mouse brain atlas
dataset downloaded from 10X Genomics website (https://
support.10xgenomics.com/single-cell-gene-expression/datase
ts/1.3.0/1M_neurons) to construct the benchmark datasets with
different number of cells (from 1000 to 1000 000). First, we
filtered out the genes that were only expressed in three or
fewer cells, and normalized the library size of the dataset.
Then, we used the gene filtering function of Scanpy, i.e.
scanpy. pp.highly_variable_genes(), with min_mean = 0.0125,
max_mean = 3, min_disp = 0.5 and n_top_genes = 2000 to obtain
the top 2000 most variable genes. With the fixed number of
genes, we sampled 1000, 5000, 10 000, 100 000, 500 000 and
1000 000 cells from the raw dataset to simulate experiments
of different scales.

Data availability

There are no new data associated with this article. Published
datasets used in this study: Zeisel et al.’s dataset ([7]; GSE60361) of
the mouse cortex and hippocampus cells is available at https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE60361; Baron
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Figure 1. Design of the WEDGE algorithm and its performance for the simulated dataset. (A) Conceptual overview of the WEDGE workflow. The blue and yellow grids

in the input expression matrix represent nonzero and zero elements, respectively. H and W are the coefficient matrix and feature matrix, respectively, calculated by

using biased matrix decomposition. gi is the ith gene, cj is the jth cell, wi is the ith row of W, and hj is the jth column of H. H+
i and H0

i are composed of the columns of H

that correspond to the nonzero and zero elements of gi, respectively. W+
j and W0

j are composed of the rows of W that correspond to the nonzero and zero elements of

cj, respectively. Hi is the combination of H+
i and λH0

i , where the blue and yellow grids are the elements of H+
i and λH0

i , respectively. Wj is the combination of W+
j and

λW0
j , where the blue and yellow grids are the elements of W+

j and λW0
j , respectively. ξ is the convergence criterion (=1 × 10−5 by default). (B) Expression matrices of

the top DE genes of the simulated reference and observed data (sparsity = 0.50), and the results generated by WEDGE, DCA, MAGIC and SAVER-X. The color bar at the

top indicates different cell types. (C) tSNE (t-distributed stochastic neighbor embedding) maps of the cells from the expression matrices imputed by different methods.

et al.’s dataset ([43]; GSE84133) of human pancreatic islet cells is
available at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?a
cc=GSE84133; Tabula Muris dataset ([37]; GSE109774) including
20 mouse organs is available at https://www.ncbi.nlm.nih.go
v/geo/query/acc.cgi?acc=GSE109774; Guo et al.’s dataset ([38];
GSE150861) containing PBMCs from two COVID-19 patients is
available at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?a
cc=GSE150861, and the 10X dataset of two healthy donors is
available at https://support.10xgenomics.com/single-cell-ge
ne-expression/datasets/3.1.0/5k_pbmc_NGSC3_aggr); Schulte-
Schrepping’s dataset ([39]; EGAS00001004571) containing PBMCs
from 18 COVID-19 patients and 22 controls (obtained by 10X
platform) is available at https://beta.fastgenomics.org/consent.
The source code of WEDGE was released at https://github.com/
QuKunLab/WEDGE.

Computational environment

All the experiments in this article were performed on a computer
cluster with 4 Intel Xeon E78860v4 CPUs (2.2 GHz, 45 MB L3 cache
and 72 CPU cores in total) and 1TB of memory (DDR4 2400 MHz).

Results
Algorithm, performance and robustness of WEDGE

The expression matrices obtained from single-cell sequencing
experiments are sparse, caused by the low RNA capture rates
during experimental sampling and processing [21, 23]. Weighted
non-negative matrix factorization (WNMF) has demonstrated
its potential for recovering missing elements from a sparse
matrix [24, 35]. However, it should be noted that the contribution
of the zero elements in the raw matrix is completely ignored
in the WNMF optimization process. In WEDGE, we adopted
a low weight (0 ≤ λ ≤ 1) for the zero elements in the
raw expression matrix during the biased low-rank matrix
decomposition method (bLRMD), and generated a convergent
imputed matrix using an alternating non-negative least-squares
algorithm (Figure 1A and section ‘Methods’). We chose not to
set λ as zero, as the contribution of the zero elements is not
completely negligible [23]. Notably, as WEDGE is a completely
unsupervised algorithm, it allows us to impute expression data
matrices without any prior information about genes or cell
types.
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To test the performance of WEDGE in restoring gene expres-
sion, we first applied it to assess a simulated dataset gener-
ated using Splatter [42] and compared WEDGE against DCA [23],
MAGIC [28] and SAVER-X [30] (Figure 1B). The reference data
include distinct marker genes for six different cell types and a
dense expression matrix (original sparsity = 10%, where sparsity
is the percentage of zero elements). Based on the assumption
that gene expression values follow a negative binomial distribu-
tion [42], the Splatter simulation set 45% of the nonzero elements
in the reference data to zero (i.e. down-sampling rate = 0.45 and
sparsity = 0.50) to simulate dropout events and to obtain a down-
sampled matrix, which we refer to as the ‘observed’ data. The
dropout events obscured the significance of the differentially
expressed (DE) genes, but WEDGE successfully recovered their
expression patterns, obtaining an imputed matrix apparently
similar to the reference matrix, especially for the DE genes in
cell type 1.

Also, we adopted the tSNE algorithm to explore the inter-
cellular relationships in two-dimensional space, and used the
adjusted random index (ARI; [25, 44]) to assess the accuracy of
the cell clustering results (Figure 1C), wherein a higher ARI value
indicates that the clustering result is relatively closer to the ‘true’
cell types. Using the expression matrix imputed by WEDGE, we
can clearly distinguish these cell types. The ARI value of the cell
clusters from the WEDGE imputed matrix is 0.99, higher than
those from the other three imputation methods.

We further evaluated the robustness of WEDGE by applying it
to impute ‘observed’ matrices with different sparsities (Supple-
mentary Figure S1). Interestingly, for the observed matrix with
a low sparsity (=0.25), all the 12 methods successfully recovered
the distinctions between the cell types. However, for very sparse
data (i.e. sparsities > 0.50) only WEDGE can still delineate the
cell identities, suggesting the advantage of WEDGE on imputing
scRNA profiles with low capture rate.

In addition, to determine whether the algorithm leads to
over-imputing—for example, erroneously restoring non-DE
genes so that they appear as DE genes—we applied WEDGE
as well as all the other imputation methods on two simulated
datasets: dataset D1, which comprised two cell types, and
dataset D2, which comprised three cell types. After imputation,
we found that the two cell types in dataset D1 could be
clearly distinguished based on the expression of the DE genes
after WEDGE imputation, with an ARI value of 0.99, higher
than the ARI values generated from all the other methods
(Supplementary Figure S2A). However, these two cell types could
not be distinguished based on the imputed expression of the
non-DE genes (ARI < 0.01 for WEDGE). Similarly, when we applied
WEDGE to dataset D2, we found that the three cell types could be
classified by the DE genes (ARI = 0.99 after WEDGE imputation,
the highest among all methods) but not the non-DE genes
(ARI < 0.01 after WEDGE imputation) (Supplementary Figure
S2B). These results indicate that WEDGE did not erroneously
impute the non-DE genes to DE genes, implying its robustness
to over-imputing.

Recovery performance for real scRNA-seq datasets

To examine the performance of WEDGE on real scRNA-seq
data, we applied it to Zeisel et al.’s dataset [7] on mouse brain
scRNA-seq. We first constructed the reference matrix by
extracting all the cells with > 10 000 UMI counts and all the genes
detected in > 40% of cells, and then generated an ‘observed’
matrix with high sparsity by randomly setting a large proportion
of the nonzero elements to zeros (sparsity = 0.90). From the

heatmaps of gene expression matrices (Figure 2A), we can see
that WEDGE recovered the expression of the DE genes, especially
those DE between interneurons and S1 pyramidal cells.

We also used other tools, including SCRABBLE [27], VIPER [21],
ENHANCE [29], ALRA [26], scImpute [31], scVI [32], DrImpute [33]
and netNMF-sc [24] to assess the same ‘observed’ matrix (Sup-
plementary Figure S3A). To quantify the similarity between the
reference and imputed expression matrices, we calculated the
cell-wise and gene-wise Pearson correlations between them [25],
where higher correlation coefficients indicate better recovery
performance. For cell-wise correlation coefficients, the WEDGE
result (median value = 0.81) is the highest among all the tested
methods (Figure 2B). The gene-wise correlation coefficients from
WEDGE were also higher than that from the rest of the meth-
ods. Moreover, we computed the correlation matrix distances
(CMDs) [25, 45] between the reference and imputed data, where
a lower CMD indicates that the imputed data are closer to the
reference data (Figure 2C). For the matrix generated by WEDGE,
the cell-to-cell CMD is 0.03 and the gene-to-gene CMD is 0.12,
which are each tied for the lowest of all the tested methods.
These comparisons together highlight that our WEDGE approach
can recover both the cell–cell and gene–gene correlations from
sparse single-cell RNA-seq datasets.

In the tSNE map of cells, WEDGE can clearly distinguish
interneurons, S1 pyramidal neurons and CA1 pyramidal neu-
rons, and the ARI value of 0.56 for the clustering result calcu-
lated from its imputed matrix is the highest among all tested
methods (Figure 2D; Supplementary Figure S3B). In particular,
in visualizing the expression of an interneuron marker gene
Gad1 [7] and an S1 pyramidal marker gene Tbr1, WEDGE appro-
priately recovered their expression levels in the corresponding
cell types, without overestimating their expression in other cell
types (Figure 2E; Supplementary Figure S3C). Furthermore, we
also applied WEDGE to Zeisel et al.’s raw dataset [7], which
includes 3005 cells and 19 973 genes. After processing with
WEDGE, the clustering performance index ARI increased from
0.42 (raw data) to 0.56, the highest among all tested methods
(Supplementary Figure S4).

As another example to confirm the utility of WEDGE, we
applied the same procedures described above to Baron et al.’s
pancreas single-cell dataset [43], and compared WEDGE with
other imputation methods. WEDGE recovered the expression of
most of the DE genes, especially those of the ductal and activated
stellate cells (Supplementary Figure S5A). Similarly, the cell-wise
and gene-wise Pearson correlation coefficients from WEDGE are
both greater than those from any other tested methods, empha-
sizing its strong recovery performance (Supplementary Figure
S5B). Also, the cell-to-cell and gene-to-gene CMDs of WEDGE are
0.02 and 0.11, respectively, which are the lowest and the second
lowest (scVI’s gene-to-gene CMDs is 0.10) among all methods
(Supplementary Figure S5C). Finally, in terms of cell clustering,
WEDGE clearly classified alpha, beta, delta, ductal, acinar, and
gamma cells, with an ARI value of 0.80, higher than those from
all the other methods (Supplementary Figure S5D).

To verify whether WEDGE aids in discovery of the biological
functions of cells, we calculated the average expression of gene
sets related to some GO terms in Zeisel et al.’s and Baron et al.’s
datasets. For example, previous studies have shown that pyra-
midal neurons are associated with cognition [46]; however, no
significant differential gene expression was discovered between
the S1 pyramidal neurons and interneurons in the original Zeisel
et al.’s dataset (P-value ≥ 0.04). After imputation, WEDGE and
netNMF-sc enhanced the differential expression patterns of the
cognition-related gene set between the two types of neurons
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Figure 2. Application and performance assessment of WEDGE for dataset GSE60361 (Zeisel et al.), compared with existing methods. (A) Visualizations of the expression

matrices of the top DE genes of different cell types, including the reference data, the observed data (sparsity = 0.90), and the imputed data generated by four different

methods. The color bar at the top indicates known cell types. (B) Pearson correlation coefficients between the reference and imputed matrices for cells (left panel)

and genes (right panel). Center line, median; box limits, upper and lower quartiles; whiskers, 1.5× interquartile range. (C) Distances of the cell-to-cell (left panel) and

gene-to-gene (right panel) correlation matrices between the reference and imputed data. (D) 2-D tSNE maps of the cells from the reference, observed and imputed

datasets. The color scheme is the same as in (A). (E) Expression of the Tba1 gene (left panel—a marker of S1 Pyramidal cells) and the Gad1 gene (right panel—a marker

of interneurons) as imputed by different methods, rendered in tSNE space.

(P-value < 10−6) (Supplementary Figure S6A). Similarly, the
insulin secretion function of pancreatic beta cells has been
reported in a previous study [47]; however, in Baron et al.’s
dataset, no significant differential gene expression of insulin

secretion-related genes was observed between beta and alpha
cells in the original dataset (P-value ≥ 0.17). In the data imputed
by WEDGE, the expression levels of insulin secretion-related
genes in beta cells were significantly higher than those in
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alpha cells (P-value < 10−21) (Supplementary Figure S6B). Some
benchmarked methods also slightly improved the differential
expression patterns of this gene set in beta versus alpha cells
(e.g. the P-values of VIPER and DrImpute imputed dataset were
0.0045 and 0.0046, respectively), whereas others did not enhance
or even reverse this trend (such as DCA, SAVER-X and SCRABBLE).

Classification of cell subpopulations

To test that if WEDGE can be applied for large datasets with
multiple tissues and organs, we used it to process the recently
released Tabula Muris dataset of mouse (10X Chromium
sequencing data; [37]). We used the k-nearest-neighbor graph-
based method in Seurat to cluster cells for both the raw
and imputed data, and presented the results in tSNE space
(Supplementary Figure S7A and B). Among the 54 cell clusters
generated from the raw data, 45 clusters have Jaccard index
values > 0.5, indicating that they were also identified in the
clustering of the WEDGE imputed data (Supplementary Figure
S7C; see section ‘Methods’). Notably, the WEDGE imputation
improved the clustering resolution for some cell types: a main
cluster of B cells (Supplementary Figure S8) was classified into
four subclusters (clusters 1, 3, 50 and 53; Figure 3A), whereas
these subclusters were not separated based on the raw data
(Figure 3B). Most cells in clusters 1, 3 and 53 are from the spleen,
whereas cluster 50 is dominated by B cells from lungs (Figure 3C).

Cluster 3 splenic B cells strongly expressed the marginal zone
B cell (MZ) marker Cr2, whereas cluster 1 splenic B cells were
characterized by strong expression of the follicular B cell (FO)
marker Fcer2a [48] (Figure 3D and E). We developed a factor called
‘expression bias’ (see section ‘Methods’ for the formula) to assess
how a given imputation method affects the differential enrich-
ment trend for inter-cluster expression comparisons. WEDGE
imputation increased the expression bias of Cr2 in cluster 3
from 0.74 to 0.88, and increased the expression bias of Fcer2a in
cluster 1 from 0.56 to 0.96. The marker gene sets characteristic
of MZ and FO splenic B cell subsets as reported by Kleiman
[49] were also DE in cluster 3 and 1, respectively, and WEDGE
respectively amplified the expression bias of these marker gene
sets from 0.59/0.60 to 0.97/0.89 (Figure 3F and G). Moreover, we
tested the expression of the marker gene sets of the two cell
types reported by Newman et al. [50], which also supported our
classification of these two respective cell subpopulations as MZ
and FO splenic B cells (Supplementary Figure S9A and B). We
noted that neither the raw data nor the WEDGE imputed data
showed any obvious expression of the transitional B cell marker
Cd93 [48] (Supplementary Figure S9C), and it was also notable
that cluster 53 apparently represented an aggregation of cells
with detected transcripts for < 600 genes (Supplementary Figure
S9D).

We also used other state-of-the-art methods to impute
the same dataset and checked their clustering results on the
splenic B cells (Supplementary Figure S10). DCA, MAGIC, ALRA,
ENHANCE and DrImpute enhanced the expression of Cr2 and
Fcer2a in some cells, but these methods also amplified batch
effects, and clustering based on the imputation data from these
methods did not clearly distinguish splenic B cells into FO and
MZ subpopulations. SAVER-X did not classify the FO and MZ
subpopulations based on differential expression trends for Cr2
or Fcer2a. In addition, VIPER, SCRABBLE and scVI were unable
to obtain imputation results from this dataset within 48 h on
the computer with 72 CPU-cores (2.2 GHz) and 1TB memory, and
netNMF-sc and scImpute did not complete because of memory
errors.

Imputation of gene expression for the COVID-19 dataset

In a previous study of COVID-19 patients, Guo et al. [38] reported
that one monocyte subset was found to strongly impact cytokine
storms in patients classified as severe-stage. Cells of this severe-
stage-specific monocyte subset strongly express many cytokines
and related transcription factors such as IL6, IL10, CXCL2, CXCL3,
CCL4, ATF3, TNF and HIVEP2. However, dropout events in single-
cell sequencing experiments obscured this trend. Here, we
applied WEDGE to this recently released COVID-19 dataset
containing 13 239 PBMCs from patients and 54 951 PBMCs from
healthy donors [38]. The clusters obtained from the WEDGE
imputed data correspond to cell clusters reported in the original
paper, with an ARI value of 0.70, the highest among all tested
methods (Figure 4A and B). Guo et al. divided the monocyte
cells into clusters 2, 9, 13 and 16, with the cells in cluster 9
apparently representing the severe-stage-specific monocyte
subset [38]. Following WEDGE imputation, the severe-stage-
specific cytokines and upstream transcription factors reported
by Guo et al. had increased expression bias in cluster 9 cells (from
0.03–0.93 to 1.00; Figure 4D). Notably, the DE genes of cluster 9
generated from the WEDGE imputed data cover 99% of the DE
genes in the raw data (Figure 4C). The WEDGE imputed data also
increased the expression bias of the APOE and CXCR3 genes in
cluster 9 cells (Supplementary Figure S11A). Similar increases
in expression bias were detected in the WEDGE imputed data
for severe-stage-specific DE genes reported by Wilk et al. [51]
(Supplementary Figure S11B).

In addition, the COVID-19 studies recently published by
Schulte-Schrepping et al. [39] and Wilk et al. [51] have shown
that the expression level of CD11C (i.e. ITGAX) in monocytes
of patients with severe COVID-19 is lower than that in normal
monocytes, while CD163 and ISG15 expression is upregulated in
patients with severe COVID-19. However, among the 4 monocyte
clusters in Guo et al.’s dataset, the expression level of ITGAX is
not the lowest in severe stage-specific monocytes (i.e. cluster 9),
and the high expression levels of CD163 and ISG15 in cluster 9
are not obvious (EB ≤ 0.65). After imputing Guo et al.’s dataset
with WEDGE, we recovered the low ITGAX expression level
and high CD163/ISG15 expression level in cluster 9 (EB ≥ 0.88),
implying that we can obtain the same conclusion from different
datasets (Supplementary Figure S12A). Other methods also
recovered the high expression level of CD163 in cluster 9.
However, in the imputed results of SAVER-X, MAGIC, ALRA
and ENHANCE, the expression level of ITGAX in cluster 9 is
not the lowest among the 4 monocyte clusters. Moreover, in
the results of DCA, SAVER-X, MAGIC, ALRA and DrImpute, the
expression level of ISG15 in cluster 9 is not the highest. On
the other hand, Guo et al. showed that severe stage-specific
monocytes highly express IL6, IL10, CXCL2, CXCL3, ATF3, TNF and
HIVEP2, but these trends are not obvious in Schulte-Schrepping
et al.’s dataset [39] (EB ≤ 0.33). After imputing Schulte-Schrepping
et al.’s dataset with WEDGE, we improved the differential
expression patterns of these genes (EB ≥ 0.67) (Supplementary
Figure S12B).

Scalability and efficiency

To quantify the scalability and efficiency of different imputation
algorithms, we counted the time and memory consumption
of WEDGE and other state-of-the-art methods when imputing
Tabula Muris dataset that contains 55 656 cells and 23 341
genes (after filtering). WEDGE consumed 1 h and up to 38GB
of memory on a 72-core computer to complete the imputation
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Figure 3. WEDGE imputation of dataset GSE109774 (Tabula Muris) facilitated the classification of splenic B cell subpopulations. (A, B) 2-D tSNE maps of the splenic

B cells generated from the WEDGE imputed data (A) and the raw data (B). The colors indicate cell clusters from the WEDGE imputed data. (C) The ratio of cells from

different organs in splenic B cell clusters. (D, E) The expression of Cr2 (D) or Fcer2a (E) in the raw and WEDGE imputed data, rendered in the 2-D tSNE space. EB: expression

bias (see section ‘Methods’). (F, G) The average expression of the marker gene sets of MZ (F) and FO (G) cells (reported by Kleiman et al. [49]) from the raw and WEDGE

imputed data.

process, which was close to the MAGIC method. (Figure 5A and
B). To further assess the computer resources that WEDGE spends
on datasets of various sizes, we applied it to impute datasets
comprising different numbers of cells (5000–1000 000) but a
fixed number of genes (2000), which were sampled from the
mouse brain atlas project (see section ‘Methods’). The runtime
of WEDGE increased linearly with the number of cells (Supple-
mentary Note S1), and its speed was close to DCA and MAGIC
(Figure 5C). For the dataset containing 1 million cells and 2000
genes, WEDGE finished the imputation of missing values in
12 min. Notably, WEDGE offers a visual interactive interface,
making it convenient for researchers to use. We have uploaded
WEDGE and the datasets used in this study to GitHub (https://gi
thub.com/QuKunLab/WEDGE).

Discussion
WEDGE effectively recovered the expression of undetected genes
in scRNA-seq data, performing especially well for datasets

with high sparsities, thereby substantially promoting our
ability to understand sparse single-cell profiles. Accordingly,
WEDGE imputation increased the ARI values of the clustering
results of scRNA-seq datasets, and facilitated high-resolution
classification of cell subpopulations. Nevertheless, we found
that other tools also showed different advantages. For example,
MAGIC, ENHANCE, ALRA and WEDGE consumed less computer
time than other methods during analysis of large-scale data, and
scVI and MAGIC required the least computer memory among all
these methods.

We tested the impact of the bias parameter λ on imputation
and found that the performance of WEDGE is not sensitive to λ

for datasets with sparsities < 0.6 (Supplementary Figure S13). For
datasets with sparsities > 0.6, a λ value of 0.1–0.2 can produce
the best recovery results. Therefore, we set λ = 0.15 as the
default value in WEDGE and used it for all datasets in this study.
The imputation contribution of the zero elements decreases
with the increase of matrix sparsity, but it cannot be ignored,
which implies that some zero elements may be related to the
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Figure 4. WEDGE enhanced marker gene expression for the COVID-19 dataset GSE150861 (Guo et al.). (A) Jaccard index between the cell clusters reported by Guo et al.

[38] and the clusters generated from WEDGE imputed data. (B) ARI values calculated from the clustering results of the imputed data generated by different methods.

The results of other methods are not shown, as SCRABBLE and scVI did not finish the imputation within 48 h on a computer with 72 CPU-cores (2.2 GHz) and 1TB

memory, while VIPER, scImpute and netNMF-sc reported memory errors. (C) Proportion of the reported DE genes that can be regenerated from the imputed data, i.e.
|Draw∩Dimputed |

|Draw | , here, Draw and Dimputed are DE gene sets generated from the raw data and the imputed data, respectively. (D) The expression of known marker genes

of severe-stage specific monocytes. Clusters 2, 9, 13 and 16 are cell clusters reported by the original paper. EB: expression bias (see section ‘Methods’).

low expression of certain genes, rather than simply reflecting
experimental noise.

Another question is whether WEDGE will introduce false
positive signals in the DE gene detection process. To address

this question, we used the set of DE genes detected from the
reference data of different datasets as the gold standard (fold-
change > 2 and P-value < 0.001) and plotted the ROC curves of
the DE genes detected from the observed and imputed data.
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Figure 5. Computer resources consumed by different imputation methods, on a computer with 72 CPU-cores and 1TB memory. (A, B) The runtime and memory spent

by different methods for imputing dataset GSE109774 (Tabula Muris), where netNMF-sc and scImpute reported errors and stopped running. (C) The computational cost

of different methods for imputing single-cell datasets of various sizes. Results that took > 9 h or reported memory errors are not shown here.

For the simulated data with high sparsity (=0.65), when the
true positive rate was 0.8, the false positive rate of the imputed
data was 0.2, lower than that of the observed data (=0.3) (Sup-
plementary Figure S14A). The ROC curves of Zeisel et al.’s and
Baron et al.’s datasets also showed that WEDGE did not introduce
additional false positive values in DE gene detection (Supple-
mentary Figure S14B and C). Therefore, we recommend that
researchers impute the expression matrix before searching for
DE genes.

There are still challenges for the informative imputation of
scRNA-seq datasets, such as how to recover the heterogeneity
between cell types instead of experimental batches, how to
discover cell subtypes with very few cells from the imputed data,
and how to use limited computer resources to process large
datasets containing millions of cells. Moreover, it necessary to
assess whether current imputation methods are applicable to
datasets obtained using diverse bioanalytical methods beyond
standard RNA-seq (e.g. single-cell ATAC-seq and profiling meth-
ods for various epigenomic modifications).

Conclusion
Here, we present an approach, WEDGE, to impute missing gene
expression information in single-cell sequencing datasets that
is based on the combination of low-rank matrix decomposi-
tion and biased weight parameters for the zero and nonzero
elements in the expression matrix. We show that the usage of
WEDGE significantly improves the clustering accuracy of many
scRNA-seq datasets, amplifies the contribution of differential
genes to identifying cell types, and helps distinguish more cell
subpopulations from low-quality data.

Key Points
• WEDGE is an effective tool for imputing sparse single-

cell data using biased low-rank matrix decomposition.
• WEDGE enhances DE gene expression and cell–

cell/gene–gene correlation from the raw scRNA-seq
data.

• In addition, WEDGE facilitates the cell subtype classi-
fication of sparse single-cell data.

Supplementary data

Supplementary data are available online at Briefings in Bioin-
formatics.
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Appendix A. Supplementary materials
The review of scRNA-seq techniques (Supplementary Table S1),
The review of processing pipelines of scRNA-seq raw data (Sup-
plementary Table S2), Introduction of imputation methods for
scRNA-seq data (Supplementary Table S3), The time complexity

analysis of WEDGE (Supplementary Note S1), Parameters for
other imputation tools (Supplementary Note S2), Parameters for
cell clustering (Supplementary Note S3), and settings for TSNE,
UMAP, and heatmap visualization (Supplementary Note S4) can
be found in Supplementary materials. D
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