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Abstract

Background: T cells generated from thymopoiesis are essential for the immune system, and recent single-cell
studies have contributed to our understanding of the development of thymocytes at the genetic and epigenetic
levels. However, the development of double-positive (DP) T cells, which comprise the majority of thymocytes, has
not been well investigated.

Methods: We applied single-cell sequencing to mouse thymocytes and analyzed the transcriptome data using
Seurat. By applying unsupervised clustering, we defined thymocyte subtypes and validated DP cell subtypes by flow
cytometry. We classified the cell cycle phases of each cell according to expression of cell cycle phase-specific genes.
For immune synapse detection, we used immunofluorescent staining and ImageStream-based flow cytometry. We
studied and integrated human thymocyte data to verify the conservation of our findings and also performed cross-
species comparisons to examine species-specific gene regulation.

Results: We classified blast, rearrangement, and selection subtypes of DP thymocytes and used the surface markers
CD2 and Ly6d to identify these subtypes by flow cytometry. Based on this new classification, we found that the
proliferation of blast DP cells is quite different from that of double-positive cells and other cell types, which tend to
exit the cell cycle after a single round. At the DP cell selection stage, we observed that CD8-associated immune
synapses formed between thymocytes, indicating that CD8sp selection occurred among thymocytes themselves.
Moreover, cross-species comparison revealed species-specific transcription factors (TFs) that contribute to the
transcriptional differences of thymocytes from humans and mice.

Conclusions: Our study classified DP thymocyte subtypes of different developmental stages and provided new
insight into the development of DP thymocytes at single-cell resolution, furthering our knowledge of the
fundamental immunological process of thymopoiesis.
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Background
The thymus gland is a specialized organ that is highly
conserved in vertebrates [1]. In the thymus, most CD4/
CD8 double-negative (DN) precursors develop into the
αβ-T cell lineage and then go through CD4/CD8
double-positive (DP) and CD4/CD8 single-positive (SP)
stages to achieve maturation [2]. While developing into
DP cells, thymocytes undergo rapid and extensive prolif-
eration, which generates a burst of DP cells and supplies
a large pool of T cell clones [3, 4]. When DP cells be-
come quiescent from expansion, rearrangement of the
TCRα chain is initiated to form mature TCRs. Then DP
thymocytes are subjected to positive and negative selec-
tion, which depend on TCR interaction with the pep-
tide/major histocompatibility complex (MHC) complex
(pMHC). In general, the TCRα chain is continuously
rearranged until a MHC-restricted TCR αβ heterodimer
is achieved [5, 6]. Although DP cells are strongly sensi-
tive to TCR stimulation [7, 8], most DP cells appear to
be neglected with no appropriate pMHC signals in their
lifespan and undergo programmed cell death. Only DP
thymocytes bearing TCRs that interact with self-peptide/
MHC complexes of low affinity will acquire MHC re-
striction and differentiate into CD4/CD8 SP cells. A
nonself-reactive TCR repertoire is ultimately shaped
through negative selection. Thymocytes that survive the
thymopoiesis process become naïve T cells and migrate
out of the thymus.
Traditional studies have mainly focused on bulk-

level analyses and have largely depended on known
markers of relevant developmental stages. In recent
years, single-cell sequencing technology has offered
researchers the opportunity to explore scientific issues
from a much wider and deeper perspective. For ex-
ample, Kernfeld et al. and Zeng et al. reported a com-
prehensive depiction of the development of the fetal
thymus in mice and humans, respectively [9, 10].
Lavaert et al. studied the single-cell transcriptional
dynamics of human postnatal thymus seeding progen-
itors [11], and Zhou et al. revealed the regulatory
gene expression dynamics leading to lineage commit-
ment in DN thymocytes [12]. These studies have
helped us to understand the development of early
thymocytes from a variety of aspects. However, the
DP cells that account for approximately 80% of the
proportion in the mature thymus were either not
present among [9, 10] or selectively excluded from
[11, 12] the target cell types used in these studies.
Recently, Park et al. presented a comprehensive land-
scape of human thymocyte development [13]. In
addition, Le et al. described the lineage specification
trajectories and commitment spectrum of human thy-
mocytes [14]. Nevertheless, the development of DP
cells in mice has not been well characterized to date.

In this study, we performed single-cell sequencing of
mouse thymocytes and reconstructed the entire develop-
mental trajectory in detail. We classified the main cell
types of thymocytes and identified three subtypes in the
DP stage. We then developed a flow cytometry gating
strategy to partition these DP subtypes at the protein level.
Based on unsupervised classification and pseudotime ana-
lysis, we found that DP thymocytes undergo an unique
mechanism of cell division that is different from that of
DN cells and other cell types. During the selection stages,
the activity of MHC-I molecule-associated antigen presen-
tation was significantly upregulated, suggesting a process
of antigen presentation and recognition between thymo-
cytes. To confirm this hypothesis, we examined immune
synapses between thymocytes. Moreover, we carried out
cross-species comparisons and identified species-specific
transcription factors (TFs) that contribute to the tran-
scriptional differences between thymocytes from humans
and mice. Together, our study provides new insight into
the development of DP thymocytes at single-cell reso-
lution, and these findings help us to better understand this
fundamental immunological process.

Methods
Study design
The objective of this study was to use scRNA-seq to cap-
ture the transcriptomes of αβ-T cells in the thymus to de-
scribe important events during αβ-T cell development.
Flow cytometry was employed to confirm observations
from sequencing datasets to validate expression levels at
baseline. Immunofluorescence and imaging flow cytome-
try were used to assess the existence of CD8-specific selec-
tion between thymocytes. Details on the sample collection
and processing are described below.

Mice
C57BL/6 mice were ordered from Beijing Vital River La-
boratory Animal Technology and maintained under spe-
cific pathogen-free conditions until the experiments
were performed. All mouse experiments in this study
were reviewed and approved by the Institutional Animal
Care and Use Committee of the University of Science
and Technology of China.

Thymocyte isolation
Thymus tissues were harvested from mice aged 6–8
weeks and gently ground in 1mL of RPMI-1640. Thy-
mocytes in a single-cell suspension were counted after
being passed through a 40-μm nylon mesh filter.

Flow cytometry
For surface marker staining, cells were labeled with
fluorescent antibodies at 4 °C for 30 min and washed
twice with 1× phosphate-buffered saline (PBS, Sangon,
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China). For intracellular marker staining, the cells were
fixed with 1% paraformaldehyde (PFA, Sangon) at 4 °C
for 10 min, washed with 1× perm/wash buffer (BD Bio-
science) once, and incubated in 1× perm/wash buffer for
30 min at 4 °C. Next, the cells were labeled with fluores-
cent antibodies at 4 °C for 30 min and washed twice with
1× perm/wash buffer. After the final wash, the cells were
analyzed or sorted using an SH800S cell sorter (Sony).

Imaging synapses between thymocytes
To maintain the natural attachment between adjacent thy-
mocytes, we gently cut the thymus with surgical scissors
in an Eppendorf tube; 1 mL of 1× PBS was added to resus-
pend the thymocytes, and the thymic debris was allowed
to settle. The suspension was pipetted and passed through
a 40-μm nylon mesh filter. After counting the cells,
approximately 1 × 107 thymocytes were labeled with fluor-
escent anti-mouse antibodies at 4 °C for 30min in ap-
proximately 100 μL 1× PBS. Then, 30 μL of 4% PFA was
directly added and gently mixed, and the cells were fixed
at 4 °C for 10min. The cells were briefly centrifuged at
100×g for 1min to avoid the formation of a tight cell pel-
let and resuspended in 200 μL of 1× perm/wash buffer.
After staining with 488-labeled phalloidin for 20min at
room temperature, the cells were centrifuged at 100×g for
1min and resuspended in 60 μL of 1× PBS. For Image-
Stream experiments, cells were directly examined using an
Amnis ImageStream Mk II Imaging Flow Cytometer
(Luminex). For immunofluorescence experiments, cells
were diluted to a proper concentration, seeded on poly-L-
lysine-coated slides and observed by confocal microscopy
(ZEISS LMS 880).

Cell proliferation staining
DPbla/re cells were sorted using the surface markers
CD45+CD4+CD8+CD2low, and the total thymocyte popu-
lation and DPbla/re cells were separately labeled with
UltraGreen (AAT Bioquest) cell dye. After culturing in
serum-free UltraCulture medium (Lonza) for 24 h, pro-
liferative cells were identified by fluorescence intensity
analysis.

Antibodies
Anti-mouse CD4 (BV421, PE, APC, and Percp-Cy5.5),
CD8 (FITC, APC, and PE-Cy7), Ly6d (FITC), CD2 (PE
and APC), CD69 (PE), Ki67 (BV421), CD3e (BV421),
and H2 (PE) antibodies were purchased from BioLegend.
Anti-mouse RORγt (PE) antibodies were obtained from
BD Bioscience. All fluorescent antibodies were used ac-
cording to the user manuals.

Single-cell sequencing
Single cells were captured in droplet emulsions using a
GemCode Single-Cell Instrument (10X Genomics), and

scRNA-seq libraries were constructed with the 10X Gen-
omics protocol using a GemCode Single-Cell 3′ Gel
Bead and Library V2 Kit. The libraries were sequenced
using a HiSeq X-10 Sequencing System (Illumina).
scATAC-seq experiments were performed as previously
described [15].

Data processing
Sequences were aligned using Cell Ranger version 1.3.1
from 10X Genomics with default parameters. The
GRCm38.p5 assembly was used as the reference genome,
and ribosomal RNA, mitochondrial RNA (Mt-RNA), and
pseudogenes were removed. Cells with fewer than 500 de-
tected genes and more than 4500 detected genes for which
total mitochondrial gene expression exceeded 40% were
removed. Genes that were expressed in fewer than three
cells were also removed. Quantile normalization was per-
formed using qnorm in R.

Identification of cell types and subtypes
Standard procedures for filtering, variable gene selection,
dimensionality reduction, clustering, and identifying
marker genes were performed using the Seurat package
version 2.3.0.

1. FindVariableGenes (x.low.cutoff = 0.025,
x.high.cutoff = 3, y.cutoff = 0.5).

2. FindClusters (reduction.type = “pca”, dims.use =
1:20, resolution=2, print.output=0).

3. RunTSNE (dims.use = 1:20, do.fast = TRUE).
4. FindAllMarkers (only.pos = TRUE, min.pct = 0.5,

thresh.use=0.5).

Merging Tabula Muris data
We downloaded raw thymocyte single-cell RNA-seq data
from Tabula Muris [16]. Sequencing data were aligned
using Cell Ranger version 1.3.1 from 10X Genomics with
default parameters. The genome build used was
GRCm38.p5 without pseudogenes, ribosomal genes, and
mitochondrial genes. Then, we used Seurat (V 3.1.4) to
integrate two datasets for analysis with the following key
parameters.

1. FilterCells (nFeature_RNA > 1000, nFeature_RNA <
5000 and percent.mt < 10).

2. FindVariableFeatures (nfeatures = 2000).
3. FindIntegrationAnchors (dims = 1:40),

IntegrateData (dims.use = 1:20).
4. RunPCA (npcs = 40), FindClusters (resolution = 1).

The robustness of clustering was tested by Seurat ana-
lysis under 25 different conditions with combinations of
five resolution values (Res = 0.8, 0.9, 1, 1.1, 1.2) and five
values for the number of neighbors in the initial graph
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(k = 15, 20, 25, 30, 35). We then calculated the
consistency of clustering for each cell pair by their co-
occurrence count across the 25 parameter settings.

Developmental trajectory and cell order analysis
After cell filtering, data were prepared for visualization
and population balance analysis (PBA) [17] by construct-
ing a k-nearest neighbor (kNN) graph, in which cells
correspond to graph nodes and edges connect cells to
their nearest neighbors. The kNN graphs were visualized
using a force-directed layout with a custom interactive
software interface called SPRING and default parame-
ters. The cell order was predicted by PBA [17], which
calculates a scalar “potential” for each cell that is analo-
gous to a distance, or pseudotime, from an undifferenti-
ated source and a vector of fate probabilities that
indicates the distance to fate branch points. For a self-
renewing system, the sum of all cells satisfies the con-
straint ∑i Ri = 0. We assigned negative values to R for
the ten cells with the highest expression of CD4sps and
CD8sps marker genes. We assigned an SP value to all
remaining cells, and the value was chosen to enforce the
steady-state condition ∑i Ri = 0. The cell order was
scaled according to the stage of cell development.

Identifying dynamically varying genes
For each gene, a sliding window (n = 20 cells) across the
cell ordering was used to identify windows with the
maximum and minimum average expression, as previ-
ously described [18]. Transition points between stages
were defined using the frequency of gene inflection
points and patterns of PBA-predicted fate probabilities.
However, owing to the continuous nature of transcrip-
tional states, the locations of these transitions should be
considered approximate. The inflection point density is
the number of genes that turn on or off at a given point
on the trajectory. For each gene, inflection points were
identified at the points with maximally increasing or de-
creasing expression, as follows. First, the trajectory of
each dynamically varying gene was smoothed using
Gaussian smoothing with a width σ = 1% of the total tra-
jectory. The gene expression derivative for gene k, de-
noted dk, was then computed. Inflection points were
identified as the points with the maximum or minimum
derivatives for each gene. To exclude maxima or minima
resulting from relatively small fluctuations in gene ex-
pression, only appreciably large extrema were retained
for further analysis. Specifically, a point with a derivative
for gene k, max (dk), was kept only if

max dkð Þ=median dkð Þ > Q

We chose the threshold Q = 3 for this study and then
plotted the density of these inflection points over the cell

ordering axis. Regions with large-scale changes in gene
expression have a high density of inflection points,
whereas relatively stable states are characterized by low
density [17].

Enrichment of TFs using SCENIC
Transcription factors from scRNA-seq data were identi-
fied using SCENIC [19] with the default parameters. An
enrichment score less than the threshold was defined as
no enrichment (0), and nCellsAssigned TFs less than
10% and greater than 90% were removed. The average of
each subgroup was obtained based on the previous clus-
tering results, and TFs with large differences (> 0.4) be-
tween subgroups were identified.

Mapping the relationship between TFs and global
changes in genes
Time-specific TFs and the possible regulatory relation-
ship between TF and genes were obtained from the
SCENIC results. Next, TF genes with high correlations
were screened out (correlation > 0.4) based on the cor-
relation between TF and gene expression. These TF
genes were assigned to different stages according to the
TF and gene expression patterns. Circos was then used
to map genes regulated by TFs.

scATAC-seq analysis
We used the general mapping, alignment, peak calling,
and motif searching procedures to process the scATAC-
seq data from APEC [15] and ATAC-pipe [20]. We also
implemented a Python script in ATAC-pipe to trim
adapters in the raw data (in paired-end FASTQ files for
each single-cell sample). APEC utilizes BOWTIE2 to
map trimmed sequencing data to the corresponding gen-
ome index and PICARD for sorting, duplicate removal,
and fragment length counting of the aligned data. The
pipeline calls peaks from the merged file of all cells using
MACS2 and ranks and filters out low-quality peaks
based on the false discovery rate (Q-value). The genomic
locations of the peaks were annotated by HOMER, and
motifs were searched using FIMO. APEC calculates the
number of fragments and the percent of reads mapped
to the transcriptional start site (TSS) region (±2000 bp)
in each cell and filters out high-quality cells. Finally, we
obtained 1933 cells with 600 accessons [15] (peak group
with a similar pattern). TF enrichment in each cell was
obtained for downstream analysis.

scRNA-seq and scATAC-seq integration analysis
We merged the genes from scRNA-seq data into gene
groups corresponding to accessions based on the genes
corresponding to the peak in the accessions above. We
then integrated the scRNA-seq and scATAC-seq (in the
form of cell × accession) data according to the
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accessions. The mutual nearest neighbor was used to
find the anchor and weight of the two data points on the
nearest 100 canonical correlation spaces (60 canonical
correlation spaces were used when analyzing the inte-
grated data). The t-SNE and PBA cell order from
scRNA-seq data were assigned to each cell for the
scATAC-seq data according to the anchor and weight.
Finally, the motif enrichment information from
scATAC-seq was assigned to each scRNA-seq cell based
on the average of the 10 cells of the PBA order. The cell
type information from scRNA-seq was assigned to
scATAC-seq.

Cell cycle analysis
We defined genes from the cell cycle Gene Ontology
(GO) category in the Mouse Genome Informatics (MGI)
database as genes associated with the cell cycle. The
average of all cell cycle-related genes was taken as the
cell cycle score for each cell. Genes with periodic expres-
sion correlating with the cell cycle [18] were used to
generate a cell cycle phase score for each cell, after
which a phase score was calculated for each phase (G1/
S, S, G2/M, M, and M/G1) by averaging expression
traces for the genes specific to that phase. Finally, the z
score of each phase in each cell was calculated, and cells
with a z score greater than 1 (one standard deviation)
were classified into each phase. If the z score of a cell in
each phase was less than 1, the cell was not considered
to be in the cell cycle. The status was divided into differ-
ent phases (G1/S, S, G2/M, M, M/G1, and not cell cycle)
for each cell. Read counts were normalized using qnorm,
and numpy.polyfit (deg = 10) was used to fit the data.

Removing cell cycle-related genes and reclustering
analysis
All genes related to the cell cycle (genes from the cell
cycle GO term in the MGI) were removed from the data,
and then reclustering was performed as previously de-
scribed (resolution = 1.9). The overlap ratio of the four
subpopulations (DPblas and the original subpopulations)
after the removal of cell cycle-related genes was
determined.
Reclustering of DPblas was also performed in accord-

ance with the previous parameters (resolution = 1).

Cell cycle phase analysis of the Tabula Muris thymus,
erythroid and neuron data sets
The cell cycle phase analysis method used was the same
as previously described, and the default parameters in
Seurat and PBA were applied to calculate the cell cluster
and cell order of the Tabula Muris thymus (Seurat reso-
lution = 2) and neuron (Seurat resolution = 0.2) datasets.
We used GSE109774 [16] for the Tabula Muris thymus
dataset. We used GSE89754 [17] for the erythroid

dataset and GSE93593 [21] for the neuron dataset. The
erythroid PBA cell order was based on the results of the
original paper.

Cell cycle phase analysis of the human thymus data sets
The cell cycle phase analysis method employed was the
same as previously described, and in Seurat (V 3.1.4), in-
tegrated methods (min.cells = 3,min.features = 500, PC =
40, resolution = 1.2) and PBA were applied to calculate
the cell cluster and cell order of the 24-year-old human
thymus E-MTAB-8581 [13] dataset.

Cell cycle phase analysis of the early T cell data sets
The cell cycle phase analysis method was the same as pre-
viously described. Seurat (V 3.1.4), integrated methods
(min.cells = 3,min.features = 500, PC = 40, resolution = 1.2)
and PBA were used to calculate the cell cluster and cell
order of the early T cell dataset GSE130812 [12].

Human mouse cross-species comparison analysis
We used Seurat (V 3.1.4) to integrate the mouse and hu-
man single-cell thymocyte datasets. The parameters used
for the analysis were as follows:

1. FilterCells (nFeature_RNA > 1000, nFeature_RNA <
5000 and percent.mt < 10).

2. FindVariableFeatures (nfeatures = 2000).
3. FindIntegrationAnchors (dims = 1:20),

IntegrateData (dims.use = 1:20).
4. RunPCA (npcs = 20), FindClusters (resolution = 1).

Genes that were differentially expressed between the
species were identified with two steps: (1) genes that
were expressed in one species but not the other
(expressed: nCells> 20, not expressed: nCells < 3); (2) for
each stage, marker genes (fold change > 0.2, background
expression < 1) for human and mouse data were com-
bined, and if the list was larger than 400, only the top
400 significant genes were included. Then, differentially
expressed genes across species were identified (fold
change > 0.25) for all developmental stages. Genes in ei-
ther (1) or (2) were regarded as differentially expressed
genes between humans and mice.
Cells were divided into 100 bins along the develop-

mental pseudotime trajectory, and smoothed gene ex-
pression values were calculated with the numpy.polyfit
(n = 10) option.
A TF list was obtained from The Human Transcrip-

tion Factors database [22], while the transcriptomes for
human samples were obtained from different datasets
(see “Availability of data and materials”). Genes regu-
lated by each TF were based on gene set enrichment
analysis (GSEA) [23]. The significance of whether a TF
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regulates cross-species differential genes was calculated
by Fisher’s exact test.
ChIP-seq data for Gata1 were obtained from Cistrome

Data Browser [24] with the accession numbers GSM912907,
GSM867158, and GSM867159. RNA-seq data for the human
and mouse thymus were obtained from ENCODE [25] under
accession numbers GSM1220578, GSM1220591, GSM1
220592, GSM1220593, GSM1220599, GSM1220601, GS
M1010944, GSE78390, GSM970852, GSE93469, and
GSE90183. All data were normalized by sequencing depth,
and differential analysis was performed with a t-test. Genes
with a fold change > 1 and p value < 0.01 were regarded as
significantly differentially expressed.

Statistical analysis
The detailed statistical methods and parameters used in
this study are described above. The original analysis
codes and scripts can be accessed at https://github.com/
QuKunLab/T-cell-development [26].

Results
Single-cell transcriptome profile depicts αβ-T cell
development in the thymus
We profiled lymphocytes in the mouse thymus with a
droplet-based single-cell RNA sequencing (scRNA-seq)
platform and obtained a total of 2004 cells. Of these,
1986 single cells with an average of 1784 detected genes
per cell passed the quality control (see “Methods”) and
were used for further analysis (Fig. 1a, Additional file 1:
Figure S1A, B). Unsupervised analysis was performed
with Seurat [27], and the cells were clustered into 15
subgroups (Fig. 1b). We divided the cells into 7 develop-
mental stages of thymocytes according to the expression
of marker genes: DN progenitors (Il2ra+), immature SP
thymocytes (ISPs, Cd4− Cd8+ Mki67+), DP blasts
(DPblas; Cd4+ Cd8+ Mki67+), DP thymocytes undergo-
ing rearrangement (DPres; Cd4+ Cd8+ Rag1high), DP cells
under selection (DPsels; Cd4+ Cd8+ Itm2a+), and CD4/
CD8 SP thymocytes (CD4sps and CD8sps). Cells in dif-
ferent stages were aggregated in a two-dimensional t-dis-
tributed stochastic neighbor embedding (t-SNE) plot
that outlined the developmental trajectory of αβ-T cells
(Fig. 1b).
To verify the developmental stages of the thymocytes

we observed, we constructed a pseudotime trajectory
using an unsupervised SPRING algorithm and PBA [17],
and the predicted timeline was consistent with the clus-
tering results (Additional file 1: Figure S1C, Fig. 1c).
Briefly, CD25 (Il2ra) represents the most DN subset,
and β-selection commits most DN cells to an αβ-T cell
fate. When progressing to the ISP stage, Cd8 expression
is turned on, and the thymocytes proliferate rapidly into
the DPbla stage with the onset of Cd4 expression, upreg-
ulating cell cycle-associated genes such as Ki-67

(Mki67). With the help of Rag1 and Rag2 genes, TCRα
loci are next rearranged in DPre cells to acquire a ma-
ture TCR signal for positive selection in the DPsel stage.
Finally, CD4sp and CD8sp cells that survive negative se-
lection will migrate out of the thymus via chemotaxis
signals (Fig. 1d, e). Notably, this classification is quite
similar to the thymocyte subpopulations in the human
thymus [13].
In addition to 13 thymocyte clusters, a group of antigen-

presenting cells (APCs) and a group of recently identified
nonconventional lymphocytes (NCLs) [9] were defined
(Fig. 1d, Additional file 1: Figure S1D). Consistently, many
stage-specific markers of thymocyte development were
highly expressed in the coordinated clusters (Fig. 1e). To
confirm our single-cell partition results, we reanalyzed the
thymocyte profile from the Tabula Muris dataset [16] and
detected 1364 thymocytes; then, we integrated them with
our data and obtained 3320 cells passing quality control.
As expected, the clustering results were nearly identical
(Additional file 1: Figure S2A, B). Moreover, thymocytes
from both datasets were distributed proportionally across
clusters with the same markers (Additional file 1: Figure
S2C, D). We also compared our single-cell clusters with
bulk-sorted thymocyte subpopulations [28] and observed
good correlation between the corresponding subtypes of
thymocytes (Additional file 1: Figure S2E). To evaluate
whether the clustering of the thymocytes was stable, we
performed Seurat clustering on the integrated data under
25 conditions with 5 resolutions (Res = 0.8, 0.9, 1.0, 1.1,
1.2) and 5 nearest neighbor values (K = 15, 20, 25, 30, 35)
(Additional file 1: Figure S3A) and calculated the
consistency of the cluster assignment for each cell. We
found that pairs of cells that clustered together in the ori-
ginal analyses consistently clustered together across par-
ameter settings (Additional file 1: Figure S3B), which
suggests that the clustering results are quite robust.

Single-cell ATAC-seq revealed new transcription factors
involved in thymocyte development
The development of thymocytes is driven by the
interplay of multiple TFs. However, a comprehensive
depiction of TF regulatory dynamics during thymo-
cyte development is lacking. As we constructed the
pseudotime development trajectory from the single-
cell snapshot of thymocytes (Fig. 1c), we next investi-
gated the dynamics of gene expression during thymo-
cyte development based on the pseudocoordinate of
each cell (Fig. 2a). We reconstructed the dynamics of
enriched TFs using single-cell regulatory network
interference and clustering (SCENIC) [19]. In addition
to the essential TFs previously reported, such as Myc,
Rorc, Gata3, Zbtb7b and Runx3 [29], novel TFs, such
as Srf, were found to be candidate TFs that regulate
thymocyte maturation (Fig. 2b). Egr3 is reported to
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be essential in the proliferation of thymocytes at the
transition of DN to DP [30]. Interestingly, we found
that Egr3 might also function at the DPsel and SP
stages (Fig. 2b).

To validate enrichment of TFs in each stage, we used
a single-cell assay for transposase-accessible chromatin
using sequencing (scATAC-seq) of thymocytes (Add-
itional file 1: Figure S4A) and anchored the single cells

Fig. 1 Single-cell transcriptome map of thymocytes. a Schematic of procedures for the extraction, sequencing, and single-cell analysis of thymocytes.
b Two-dimensional representation of cells via t-SNE, as colored by cluster identity; each dot represents one cell. t-SNE was performed after quality
control. c Two-dimensional representation of cells via tSNE, as colored by the PBA-predicted differentiation order (see “Methods”); each dot represents
one cell. d Heat map of cluster marker genes (color-coded by clusters), with representative genes labeled (right). Columns denote cells; rows denote
genes. e Il2ra, Cd4, Cd8a, Mki67, Rag1, Itm2a, Ccr7, Klrd1 and H2-Aa marker genes projected onto t-SNE plots. Color bar, normalized expression value
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Fig. 2 Single-cell ATAC-seq revealed new transcription factors involved in thymocyte development. a Heat map of dynamically changing genes
during thymocyte development. Cells (columns) are ordered from DN to SP, as predicted by PBA. Genes (rows) are ordered by smoothed peak
expression using a Gaussian kernel. b Dynamic TF enrichment during thymocyte development, as predicted by SCENIC. Clusters are as labeled in
Fig. 1b. The color bar represents the average of the TF enrichment score for each stage. TFs in red were reported to be essential for the development
of thymocytes in previous studies. c scATAC-seq data were mapped onto scRNA-seq data (see “Methods”). d Enrichment of TFs (E2f1, Rorc, Srf and
Egr3) during thymocyte development (see “Methods”) in scATAC data. The color bar represents the deviation in TFs. Each dot represents one cell. e
Circos plot describing the regulation of genes by TFs. The left side shows the TFs enriched at each stage (colors correspond to DN, ISP, DPbla, DPre,
DPsel, CD4sp, CD8sp), as shown in Fig. 2b. The right side shows genes differentially expressed at each stage, as in Fig. 2a; some marker genes at each
stage are marked outside the circle. The line from left to right indicates that the TFs regulate corresponding genes. The gray link indicates that the
correlation between TFs and genes is less than 0.4
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from chromatin accessibility profiles onto those from
scRNA-seq (Fig. 2c, Additional file 1: Figure S4B). We
measured TF motif enrichment at each developmental
stage according to the chromatin-open status of thymo-
cytes and observed TF motif enrichment patterns similar
to those of the SCENIC predictions (Additional file 1:
Figure S4C). For example, the Srf and Erg3 motifs were
highly enriched in DPsels and SP subtypes (Fig. 2d), sug-
gesting that these TFs function in the development of
thymocytes. We also mapped scATAC-seq data onto the
integrated data and found similar TF enrichment pat-
terns (Additional file 1: Figure S4D-F). Next, we con-
structed a regulatory network of enriched TFs for each
developmental stage according to the coexpression pat-
tern between TFs and marker genes considering the
binding motifs in promoter regions (Additional file 1:
Figure S5). A Circos plot showed that these stage-
specific TFs control expression of marker genes at their
stages and helped thymocytes to transition to the next
stage (Fig. 2e), illustrating the programmed development
progress of thymocytes under the regulation of TFs.

Ly6d and CD2 can serve as new markers to partition DP
subtypes
DP cells account for approximately 80% of thymocytes
and undergo essential processes of proliferation, re-
arrangement and selection. However, the subclassifica-
tion of DP cells remains unclear due to a lack of specific
markers for distinguishing thymocytes undergoing dif-
ferent developmental stages. In this study, we classified
DP cells into three subtypes at the transcriptome level
according to the RNA expression pattern and relative
biofunction of marker genes: DPbla, DPre, and DPsel.
To identify specific markers, we explored differentially
expressed cell surface marker genes across thymocyte
subtypes (Fig. 3a) and observed that Ly6d was highly
expressed in thymocytes but dramatically decreased in
DPsels and SP cells. In contrast, expression of Cd2 was
relatively low before the DPsel stage but was extensively
elevated in DPsels and SP cells (Fig. 3a, b). When inte-
grating with Tabula Muris data, we observed very similar
expression patterns of Ly6d and CD2 across thymocyte
subtypes (Additional file 1: Figure S6). These results are

Fig. 3 Ly6d and CD2 can serve as new markers to gate DP subtypes. a Heat map of selected cell surface marker genes (color-coded by clusters).
Columns denote cells; rows denote genes. b Violin plots showing normalized expression levels of selected marker genes that changed during the
course of T cell development (Cd8a, Ly6d, Cd2 and Mki67). c Flow cytometry measurements of Ly6d expression in thymocyte subpopulations. d
Flow cytometry gating strategy for identifying ISPs and the DP subset. e Flow cytometry measurement of CD24, CD3, Rorγt and CD69 expression
in ISPs and the DP subtype
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consistent with previously reported transcriptional dy-
namics at the bulk level [28]. To verify whether surface
marker expression is consistent with RNA expression,
we performed flow cytometry analysis for Ly6d. As ex-
pected, Ly6d expression increased from the DN2 stage
and remained high until the SP stage (Fig. 3c).
Ly6d is reported to identify the branch point of B cell

and T cell development [31], but its behavior in T cell
development has not been described. CD2 is essential
for thymic selection [32]. Thus, Ly6d and CD2 are po-
tential markers to distinguish the developmental stages
of DP thymocytes, and we performed flow cytometry
analysis to assess whether Ly6d and CD2 may serve as
new markers to partition DP subtypes. Together with
Ki67 and CD3, we successfully identified ISPs and three
DP subtypes: ISPs, CD4−CD8+Ly6d+CD3−; DPblas,
CD4+CD8+CD2lowKi67+; DPres, CD4+CD8+Ly6dhiC-
D2lowKi67−; and DPsels, CD4+CD8+CD2hi (Fig. 3d). To
verify this gating strategy, we also examined several
known stage-specific markers, such as CD24, Rorγt, and
CD69. CD24 was highly expressed on early thymocytes
[33] and downregulated from DPblas and DPres. Rorγt,
a DP marker [34], was differentially expressed on DP
subtypes and downregulated on DPsels. CD69, a marker
for DP cell selection [35], was upregulated on DPsels.
These protein expression dynamics confirmed that the
DP subtypes we defined were at different developmental
stages (Fig. 3e).

DPblas differentiate into DPres during the cell cycle
When committed to the αβ-lineage, thymocytes
undergo rapid proliferation and transition to DP cells.
Consistently, Mki67 was highly expressed on ISPs and
DPblas (Fig. 1e). To investigate the proliferation
process in detail, we quantified the average expression
level of all cell cycle-associated genes during the de-
velopmental process and observed strong proliferation
of ISPs and DPblas (Fig. 4a). Interestingly, we noticed
that the expression patterns of cell cycle-associated
genes in ISPs and DPbla1–4 were quite different, in-
dicating different proliferation statuses. Therefore, we
classified the cell cycle phases (G1/S, S, G2/M, M or
M/G1) of all thymocytes based on phase-specific gene
expression [18] (see “Methods”). We found that 40%
of ISPs were in M/G1 phase, indicating strong con-
tinuous cell cycle proliferation. However, when cells
entered the DPbla stage, the M/G1 phase was rarely
observed (Fig. 4b), indicating that most DPblas exited
the cell cycle after proliferation. Consistent with this,
the four cell cycle phases appeared to be distributed
in chronological order along the developmental trajec-
tory of DPblas, whereby most DPbla1s were in G1/S
phase, DPbla2s were in S and G2/M phases, and
DPbla3s and DPbla4s mainly stayed in G2/M and M

phases (Fig. 4b). The expression dynamics of cell
cycle phase-specific genes also coordinated with the
chronological order of the cell cycle phases in DPblas
(Fig. 4c).
The observed correlation of cell cycle phases and

predicted DPbla stages might be caused by the follow-
ing: (1) the single-cell clustering and pseudotime pre-
diction analysis were dominated by cell cycle genes or
(2) DPbla cells differentiated into DPres during the
cell cycle and tended to exit the cell cycle after div-
ision. Thus, we excluded all cell cycle-associated
genes and reanalyzed the cell clustering and pseudo-
time trajectory with the same parameters (Additional
file 1: Figure S7) and found that the chronological
order of cells with or without cell cycle-associated
genes correlated significantly (Pearson r = 0.995, p
value < 10− 24, Fig. 4d). The distributions of cell iden-
tities at the four DPbla stages were also very similar
(Fig. 4e). These results suggest that DPbla cells differ-
entiate into DPres during the cell cycle and exit the
cell cycle after division.
To test this hypothesis, we analyzed publicly available

single-cell RNA profiles of mouse and human thymo-
cytes (Additional file 1: Figure S8, 9) [12, 13, 16] in the
same manner. Similar to our data, we observed a con-
served chronological distribution of cell cycle phases in
mouse and human DPblas (Fig. 4f). However, during
the proliferation of DN thymocytes, the cell cycle
phases seemed not to be sequentially distributed
(Fig. 4g, Additional file 1: Figure S10), suggesting dif-
ferent proliferation mechanisms in DN and DP thy-
mocytes. We also assessed proliferation during the
development of other cell types, such as erythroid
cells [17] and neurons [21] (Additional file 1: Figure
S11), though the cell cycle phases were randomly dis-
tributed during the proliferation stages in both cell
types, suggesting that the chronological distribution of
the phases in development may be DPbla specific
(Fig. 4f, g).
To validate the tendency of DPblas to exit the cell cycle,

we sorted DPblas/DPres, cultured them in vitro, and
quantified the proportion of proliferative cells among
DPblas/DPres by UltraGreen staining. For DPblas, only
14% of proliferating cells divided more than once com-
pared to 43% in total thymocytes (Fig. 4h), confirming that
DPblas tended to exit the cell cycle after division. In
addition, we investigated differentially expressed genes be-
tween DPbla subgroups and found that genes involved in
T cell recombination and selection were enriched at the
end of the DPbla stage (Additional file 1: Figure S12). This
result suggests that the cell cycle process during the DPbla
stage may help in preparing for the initiation of TCRα
chain recombination and the positive selection progress,
which occurs in DPres.
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Thymocytes serve as APCs for CD8-associated thymic
selection
Following the DPbla stage, thymocytes in the DPre stage
enter a relatively quiescent phase [30] with little

alteration in gene expression (Fig. 2a) to achieve TCRα
chain rearrangement. After TCRα chain recombination
and TCR maturation are complete, thymocytes are sub-
jected to thymic selection in the DPsel stage. We
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identified three DPre and two DPsel subtypes. To verify dif-
ferences among these subtypes, we analyzed differentially
expressed genes between the DPre and DPsel subtypes (Add-
itional file 1: Figure S13A, B) and found that these subtypes
appear to be in different developmental stages. For example,
mitochondrial cytochrome c oxidase-associated genes were
enriched in DPre1, suggesting high metabolic activity. In
contrast, genes involved in SRP-dependent cotranslational
protein targeting the membrane were enriched in DPre2,
which might result from the TCR translocation process. En-
richment of the GO term “T cell differentiation” in the
DPre3 cluster might indicate maturation of the TCR signal
at the late rearrangement stage (Figure S13C). In terms of
DPsel subtypes, DPsel1 cells were highly enriched with the
GO term “T cell costimulation”, suggesting that these cells
undergo an active selection process. The “cytoplasmic trans-
lation” GO term was associated with DPsel2 cells, indicating
that these cells are preparing for differentiation into the next
stage (Figure S13D).
In addition, we observed strong enrichment of the

MHC-I antigen presentation process in DPsels, CD4sps,
and CD8sps (Fig. 5a). For example, expression of MHC-
I, such as H2-D1, H2-K1, and B2 m, which are essential
for antigen presentation, was significantly increased in
DPsels and SP cells compared to DPre cells (Fig. 5b).
Immunoproteasome subunits such as Psme2 and antigen
loading-associated genes such as Tap1 and Tapbp were
also upregulated in these stages (Fig. 5b). Furthermore,
increased MHC-I antigen presentation activity at selec-
tion stages was observed in the integrated mouse and
human thymocyte data (Additional file 1: Figures S14,
S15). We then performed flow cytometry analysis and
verified upregulation of surface MHC-I molecules in the
DPsels and SP cells (Fig. 5c). These findings suggest an
active MHC-I antigen presentation process in DPsels
and SP cells.
CD8-associated positive and negative selection of thy-

mocytes depends on the interaction of CD8, TCR, and
the peptide-MHC-I (pMHCI) complex. However, the
source of pMHCI has not been well studied. Classically,
thymic epithelial cells (TECs) and APCs are considered
major contributors. Nevertheless, it has been reported
that thymocytes still exhibit normal CD8sp differenti-
ation when pMHCI is expressed only on hematopoietic
cells [36]. Moreover, soluble pMHCI can effectively res-
cue CD8sp differentiation in an MHC-I-deficient fetal
thymic organ culture system [37, 38]. These data suggest
that CD8sp selection may respond to a wide source of
pMHCI, which may include pMHCI on thymocytes
themselves. In addition, expression of thymoproteasome
subunits, which promote CD8 T cell differentiation [39,
40], was detected in thymocytes (Additional file 1: Figure
S16); therefore, these cells are capable of providing a
pMHCI signal for CD8-associated thymic selection.

We observed high expression of Cd2 by DPsels and
SPs, which is critical for the formation of immunological
synapses (ISs) [32, 41]. Thus, when DPsels and SPs
interact intensively with proper pMHC on APCs during
the selection process, ISs can be observed between them.
To investigate whether selection occurs between thymo-
cytes, we performed immunofluorescence experiments
to detect ISs formed between thymocytes and adjacent
APCs. We found that DP and CD4sp cells formed ISs
with CD4-CD8-APCs in the thymus, indicating active
CD4-associated selection between them (Fig. 5d). In
addition to CD4-specific ISs, we detected CD8-
associated ISs between thymocytes (Fig. 5d). When we
further investigated adjacent thymocytes by imaging flow
cytometry (Fig. 5e), we also observed clear CD8-
associated ISs between adjacent DP and SP cells with
CD4 evenly distributed on the surface (Fig. 5f). This
finding suggests active CD8-associated selection between
thymocytes. These results demonstrate that thymocytes
can serve as APCs for CD8-associated thymic selection.

Species-specific TFs regulate cross-species transcriptional
differences during thymocyte development in humans
and mice
To investigate cross-species differences in thymocyte
development, we integrated the single-cell transcrip-
tome profiles of adult human and mouse thymocytes.
Consistent with a previous report [13], the clusters of
human and mouse thymocytes were mixed well
(Fig. 6a, Additional file 1: Figure S17A), indicating that
the development of thymocytes is conserved between
these species. Nonetheless, cross-species transcrip-
tional differences at the single-cell level occur during
thymocyte development [13, 14]. Accordingly, we
compared the single-cell transcriptomes of human and
mouse thymocytes across all clusters and found many
differentially expressed homologous genes, including
previously reported genes such as AEBP1, BAALC, and
DTX1 [14] (Fig. 6b, c).
To investigate the regulation of transcriptional differ-

ences between humans and mice, we focused on differ-
entially expressed TFs (Figure S17B). To this end, we
overlapped their regulated genes annotated by MSigDB
[42] with the differentially expressed genes between
humans and mice and examined the enrichment to de-
termine whether they might drive cross-species tran-
scriptional differences (Fig. 6d). In humans, genes
regulated by differential TFs, such as CREB3L4, HES2,
ZNF146, ZNF423, and ZNF711, were significantly
enriched among the genes differentially expressed from
mice, indicating that these TFs might contribute to
cross-species transcriptional differences in humans
(Additional file 1: Figure S17B, C). In mice, the candi-
date driver TFs detected were Ets2 and Gata1 (Fig. 6d, e,
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Figure S17D). Ets2 belongs to the ETS-domain transcrip-
tion factor family, which is critical for many biopro-
cesses, including development [43]; Gata1 is known to
be essential for erythroid and megakaryocytic differenti-
ation [44]. To verify whether Gata1 is capable of regulat-
ing these differentially expressed genes between humans
and mice, we analyzed ChIP-seq data for Gata1 and
found that it binds to genomic regions around these dif-
ferentially expressed genes, such as Skap1, Ap3s1, and
P2ry10 (Fig. 6f, g, Additional file 1: Figure S17E, F).
Moreover, Skap1 was also among the most differentially
expressed genes in the human and mouse thymus
(Fig. 6h). Thus, Gata1 might play a role in driving cross-
species transcriptional differences between humans and
mice.

Discussion
The proper development of T cells is essential for effective
responses against invading pathogens and for tolerance
against self-antigens in the adaptive immune system; it is
therefore a fundamental subject of investigation. In this
study, we surveyed the mouse thymocyte development
process at a single-cell resolution and classified subtypes
of DP thymocytes that were consistent with those of hu-
man thymocytes [13]. Unlike previous classifications of
DP cells, for which gating strategies were mainly based on
expression of a few well-studied marker genes, we classi-
fied cell subtypes via unsupervised analysis of high-
throughput single-cell transcriptomes and then confirmed
them by flow cytometry, rendering our classification a bet-
ter representation of the inherent heterogeneity between

Fig. 5 MHC-I antigen presentation occurred between thymocytes. a Top enriched GO terms for marker genes of DPsels, CD4sps and CD8sps. GO term
enrichment analysis was performed with Metascape. b Violin plots showing normalized expression levels of selected marker genes that changed during the
course of T cell differentiation (H2-D1, H2-K1, B2 m and Tapbp). c Flow cytometry measurements of MHC-I expression in thymocyte subpopulations. d Immune
synapse detection by confocal microscopy. The observed immune synapses are indicated by white arrows. The color bar represents 5 μm. e Gating scheme for
thymocyte doublets by ImageStream flow cytometry. f The upper panel shows an example of an immune synapse (indicated with white arrows) formed
between adjacent thymocytes. The bottom panel shows an example of adjacent thymocytes with no significant interactions
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Fig. 6 (See legend on next page.)
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cell subgroups. In addition to DP cells, DN and SP cell clus-
ters were detected in our data. We classified SP cells into
CD4sp and CD8sp clusters. A small proportion of CD4sp
cells appeared to express CD8 mRNAs, which made CD4sp
and CD8sp cells seemed not to be pure. However, we ob-
served a very robust classification of these two clusters
across different analysis parameters, suggesting that the
CD4sp and CD8sp clusters we identified are indeed tran-
scriptionally different. The moderate expression of CD8
mRNA in CD4sp cells may be caused by the delayed deg-
radation of CD8 mRNAs. Overall, the relatively low cell
number of our dataset limited the power in terms of separ-
ating SP clusters, and more experiments, such as cell sort-
ing and single-cell sequencing, are needed to fully
determine the cell purity of the CD4sp and CD8sp clusters.
During the transition from DN to DP, thymocytes

undergo 6–8 divisions [45] to generate a large pool of
DP cells. Consistent with this, we observed a notable
proportion of M/G1 thymocytes in the DN and ISP
stages, indicating continuous cell cycles. Thus, DN thy-
mocytes are self-renewable and support the persistence
and differentiation of thymocytes without any input
from bone marrow progenitors for a relatively long time.
When entering the DPbla stage, thymocytes invoke a dif-
ferent proliferation pathway and differentiate into DPres
during the cell cycle, which appears not to be self-
renewable. This may be caused by upregulation of
RORγt in DP cells, which suppresses the proliferation of
thymocytes [30]. Typically, DP cells comprise the major-
ity (60 to 80%) of thymocytes in the first 4 to 5 decades
of life. Afterwards, as a consequence of thymic involu-
tion, expansion at the early DP stage seems to be dis-
rupted, and DP cells decline dramatically and
irreversibly (to less than 15%) [46]. Decreased thymocyte
levels result in a deficit in naïve T cell output to the per-
ipheral T cell pool, strongly contributing to the immune
insufficiency of older individuals [47]. Hence, prolifera-
tion at the early DP stage is crucial to maintain the
homeostasis of thymic T cell development. Our study re-
vealed a unique proliferation behavior of DPblas that
lacks self-renewal ability. The unique division

mechanism of DP thymocytes may lead to a decline in
the DP population during thymic involution.
Thymic selection is essential for T cells to establish

central tolerance, which depends on the TCR affinity
with the self-peptide-MHC complex. Unlike CD4 T cells
restricted to MHC-II, which is expressed on only TECs
and APCs, CD8 T cells recognize peptides presented on
MHC-I, which is widely expressed on a variety of cells,
including thymocytes themselves. Our data suggest that
upregulated activity of MHC-I antigen presentation in
DPsels and SP thymocytes may contribute to CD8sp T
cell selection between thymocytes, as also indicated by
previously reported data [36–38]. This phenomenon
may also be related to the thymic preference for CD4 T
cells over CD8 T cells, which is usually thought to be a
consequence of the default CD4 T cell pathway [48] or
homeostatic mechanisms [49, 50]. Our study results sug-
gest another possibility of easier access to pMHCI in
CD8sp selection, accelerating fate decisions for CD8sp
cells. Consistent with this, CD8 T cells usually become
reconstituted faster than CD4 T cells after hematopoietic
stem cell transplantation [51].

Conclusions
In summary, this study classified the main thymocyte
cell types and identified three subtypes of DP cells at dif-
ferent developmental stages. We revealed that Ly6d and
CD2 can be used as surface markers to partition these
subtypes at the protein level. Based on the classification
of DP thymocytes, we found that DPblas differentiate
into DPres during the cell cycle, which is specific to DP
thymocyte development compared to DN and other cell
types. We also observed that at the thymic selection
stage, thymocytes can serve as APCs in CD8-associated
selection. Based on cross-species comparison, we found
that species-specific TFs contribute to the transcriptional
differences between thymocytes from humans and mice.
Together, this study provides new insight into the devel-
opment of DP thymocytes at a single-cell resolution and
helps us to better understand this fundamental immuno-
logical process.

(See figure on previous page.)
Fig. 6 Species-specific transcriptional regulation during thymocyte development between humans and mice. a Two-dimensional representation of
cells via UMAP, as colored by species (left), cluster identity in humans (middle) and cluster identity in mice (right); each dot represents one cell. b A
heat map of differentially expressed genes between species, with exemplar genes labeled (right); genes in red were reported to be differentially
expressed between these species, and genes in bold are discussed below. c Expression of representative genes (AEBP1, BAALC, DTX1 and GATA1)
involved in the development of T cells. The value is the smoothed gene expression value. d Expression of TFs across stages in humans and mice. The
color indicates the average expression value; the circle indicates the −log10 p value of TF enrichment. e The transcriptional regulatory network of
Gata1, which shows the genes that are differentially expressed between species in Fig. 6b. f Gata1 ChIP-seq profiles of Skap1 gene loci. The Gata1
ChIP-seq data are from murine erythroleukemia cells (top) and ES (embryonic stem) cell-derived erythroid progenitors (middle and bottom). ChIP-seq
signals were obtained from Cistrome Data Browser. g Expression of SKAP1/Skap1 in humans and mice during the development of T cells. The value is
the smoothed gene expression value. h Volcano map of human and mouse thymus data. The absolute value of the fold change > 1 and p value <
0.01 are regarded as significant differences; mouse is blue and human red; the label is the gene found in Fig. 6b, and the red ones are known (AEBP1)
and predicted (SKAP1) differential genes between humans and mice. RNA-seq data were obtained from ENCODE
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