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Abstract

Background: Rheumatoid arthritis (RA) is a chronic, systemic autoimmune disease that involves a variety of cell
types. However, how the epigenetic dysregulations of peripheral immune cells contribute to the pathogenesis of
RA still remains largely unclear.

Results: Here, we analysed the genome-wide active DNA regulatory elements of four major immune cells, namely
monocytes, B cells, CD4+ T cells and CD8+ T cells, in peripheral blood of RA patients, osteoarthritis (OA) patients
and healthy donors using Assay of Transposase Accessible Chromatin with sequencing (ATAC-seq). We found a
strong RA-associated chromatin dysregulation signature in monocytes, but no other examined cell types. Moreover,
we found that serum C-reactive protein (CRP) can induce the RA-associated chromatin dysregulation in monocytes
via in vitro experiments. And the extent of this dysregulation was regulated through the transcription factor FRA2.

Conclusions: Together, our study revealed a CRP-induced pathogenic chromatin dysregulation signature in monocytes
from RA patients and predicted the responsible signalling pathway as potential therapeutic targets for the disease.
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Background
Rheumatoid arthritis (RA) is a chronic autoimmune
disease that affects about 0.5–1% of the population [1].
Patients with severe RA can suffer from irreversible
disability and an inability to work, and the mortality rate
of RA patients is higher than in healthy people. The
pathology of RA is not fully understood, but aberrant
immune system function is believed to be essential for
RA pathogenesis [2]. Infiltration of T cells, B cells, and
monocytes in the synovial membranes enhances the
inflammation environment and cartilage damage in RA
[3]. However, cartilage damage is also observed in other
degenerative joint disorders such as osteoarthritis (OA)
[4]. Despite the mechanistic and phenotypic differences
between RA and OA, cartilage damage is understood as
a key trigger of inflammation at the joints in both
diseases [4]. Therefore, OA is often used as control in
researches of RA to reveal the autoimmune character-
istics of RA.
Inflammatory cytokines play essential roles in the

pathogenesis of RA. For example, tumour necrosis factor
(TNF)-α, interleukin (IL)-1β, and IL-6 enhance osteo-
clastogenesis at the joints, which leads to bone erosion
[5]. Elevation of TNF, IL-1β, and IL-6 induces the
production of CRP [6, 7], another inflammatory factor
that reflects disease activity of RA [8, 9] .CRP functions
in a variety of ways to promote RA pathogenesis. For
instance, CRP binds to Fcγ receptors and mediates the
secretion of inflammatory cytokines to initiate proinflam-
mation reactions [10]. Besides, CRP triggers bone destruc-
tion by activating RANKL to promote osteoclastogenesis in
RA [11]. Thus, biologic drugs targeting inflammatory path-
ways, such as TNF-α and IL-6 signals, have been recom-
mended to treat RA in combination with conventional
synthetic drugs, and such combinations confer significantly
better clinical efficacy than synthetic drugs alone [12].
In addition to dysregulation at genetic level, RA

patients also exhibit epigenetic abnormalities [13]. The
DNA methylation and histone modification of the
immune cells in the joints are generally altered in RA,
and such modifications contribute to activation of im-
mune cells [14]. Besides local impacts in joints, many
RA-related features are present in the peripheral blood
of patients, such as the appearance of autoantibodies
and CRP, elevated inflammatory cytokines [3], which
affect other parts of the body through the circulation
system. Thus, RA-related epigenetic dysregulation is also
observable in peripheral samples. DNA methylation
alteration is the most common epigenetic dysregulation
in peripheral immune cells, including a global DNA hy-
pomethylation in T cells and monocytes [15]. However,
it remains unclear how peripheral epigenetic dysregula-
tion is induced and how such dysregulation contributes
to RA pathogenesis.

Here, we examined the chromatin states of four main
immune cell types in the peripheral blood from RA pa-
tients using Assay of Transposase Accessible Chromatin
with sequencing (ATAC-seq) [16]. We detected RA-
associated chromatin dysregulation in peripheral mono-
cytes that promote the RA pathogenesis and found that
serum CRP of RA patients is responsible for it.

Results
Immune cells in peripheral blood exhibit extensive RA-
associated chromatin dysregulation
We collected peripheral blood samples directly from 26
RA patients and 23 age- and sex-matched OA patients
(Table 1, Additional file 2: Table S1). We sorted monocytes,
B cells, CD4+ T cells, and CD8+ T cells (Additional file 1:
Figure S1a, b) and then constructed ATAC-seq libraries for
high throughput sequencing. Additionally, we downloaded
14 ATAC-seq profiles for the same immune cell types from
peripheral blood of healthy donors from the GEO database
(GSE118189 [17], GSE74912 [18]) as healthy controls
(Fig. 1a). We used a published ATAC-seq pipeline [19] to
identify focal peaks for accessible chromatin regions
(accessible regions; Fig. 1a). After filtering and quantile
normalization, we identified a total of 169,267 high-quality
and reproducible accessible regions across these 4 immune
cell types (Additional file 1: Figure S1c-e, Additional file 3:
Table S2).
Next, we performed a principal component analysis

(PCA) for all samples, which indicated that disease-
specific differences in accessible regions were over-
whelmed by cell-type-specific differences (Fig. 1b). We
also performed a pairwise comparison of the ATAC-seq
profiles between each of the four immune cell types,
which again emphasized that the differences inherent to
the cell types overwhelmed the disease-specific trends in
chromatin states (Fig. 1c). These results clearly revealed
the necessity to inspect the different cell types individually.
Pursuing this, we used GREAT [20] annotations to ex-
plore the disease ontology categories of cell-type-specific
accessible regions, which indicated that “rheumatoid arth-
ritis”-associated genomic loci were highly enriched among
the monocyte- and T cell-specific accessible regions
(Fig. 1d). Thus, we hypothesized that the altered access-
ible regions of peripheral immune cells in RA patients
reflect the RA-associated chromatin dysregulation,
which may contribute to the pathogenesis of RA.

RA-associated chromatin dysregulation in peripheral
monocytes represents an RA signature
We next examined the chromatin states of the different
peripheral immune cell types among RA patients, OA pa-
tients, and HD in detail. Compared with HD, there were
thousands of significant differentially accessible regions in
the OA and RA patients for all examined cell types (Fig. 2a).
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However, when we compared RA with OA, we found
1085, 69, 1, and 0 differentially accessible regions in
monocytes, CD4+ T cells, CD8+ T cells, and B cells,
respectively (|log2 fold change | > 1, p < 0.001, FDR <
0.1), and the differentially accessible regions between
cell types exhibited barely any overlap (Fig. 2a, b).
Since the distributions of monocyte subtypes may
differ among patients, we used surface expression of
the CD14 and CD16 to catalogue the monocyte subpopu-
lations in peripheral blood: there were no significant dif-
ferences for monocyte subtype distributions between RA
and OA patients (Additional file 1: Figure S2a). This result
revealed that the chromatin dysregulation in monocytes of
RA patients may result from general changes in chromatin
status, rather than an imbalance in the distribution of
monocyte subtypes.
To further investigate the characteristics of the detected

differentially accessible regions in monocytes among RA
patients, OA patients, and HD, we performed pairwise
comparison and unsupervised clustering analyses, which
grouped all the differentially accessible regions into three
distinct clusters (|log2 fold change | > 1, p < 0.001,
FDR < 0.1; C1, C2, C3; Fig. 2c; Additional file 4: Table
S3). C1 regions were more accessible in HD, represent-
ing a normal chromatin state signature. C2 regions
were more accessible in both OA and RA patients,
representing a disease signature. C3 regions were more
accessible in RA compared to OA and to HD, repre-
senting an RA signature (Fig. 2c, d). Notably, similar
analyses of the chromatin states in the other examined
cell types revealed clusters of more or less accessible

regions in both OA and RA patients, but no obvious
clusters specific to RA (Additional file 1: Figure S2b).
By annotating functions of C1–C3 regions with GREA

T, we observed no significant enrichment of particular
disease ontologies or biological functions for C1 regions
(Additional file 1: Figure S2c). C2 regions were highly
enriched for cytokine and immune system-associated
signalling pathways and autoimmune disease ontology
(Additional file 1: Figure S2c), consistent with the known
functional impacts of cytokines and immune response in
both RA and OA [4]. C3 regions were also strongly
enriched for cytokine, immune-associated pathways and
autoimmune disease ontology. In addition, “bone inflam-
mation disease” and “rheumatoid arthritis” ontologies
were highly enriched in C3 regions (Fig. 2e), confirming
that C3 regions represent an RA signature, for example,
IL-1B [21] and JAK1 [22], which are essential for proin-
flammatory signal transduction and upregulated in RA
patients (Additional file 1: Figure S3a). Moreover, we ap-
plied a widely used analysis tool named ChromHMM
[23] to characterize the functional genomic features of
C3 peaks. We found that these peaks were highly
enriched in promoters and active enhancers (Additional
file 1: Figure S3b). Besides, we clustered the differential
peaks of B and T cells with the same parameters and
found no enriched RA-associated disease ontologies in
them (Additional file 1: Figure S2b, c). To further
confirm that C3 regions represent an RA signature, we
performed a PCA analysis with C1, C2, and C3 regions
for RA patients, OA patients, and HD. Only when C3 re-
gions were used as features, the PCA model separated

Table 1 Clinical data of patients included in this study

Blood samples for ATAC-seq libraries Blood samples for FACS analysis Blood samples for
CRP stimulation

RA patients OA patients RA patients OA patients OA patients

Number of patients 26 23 8 5 8

Gender, F/M 21/5 19/4 8/0 3/2 4/4

Age (years) 54 (48–66) 61 (54–67) 54.5 (49.5–68.75) 61 (57–62) 65 (62–67.75)

RF positive (%) 76.9 0 75 0 0

Anti-CCP positive (%) 73.1 NA 87.5 NA NA

TCJ 10 (3–12) NA 11 (4.75–14) NA NA

SCJ 10 (4–12) NA 10 (3.5–11.5) NA NA

GH 70 (50–80) NA 75 (50–80) NA NA

ESR 30 (16–42) 11 (10–14.75) 29.5 (15.75–46.75) 14 (8–19) 8 (6–18.5)

CRP 22.9 (6.8–44.3) 3.13 (3.13–3.14) 30.22 (6.75–53.95) 3.11 (3.11–3.12) 3.055 (2.97–7.3)

DAS28-ESR 6 (5–6) NA 6 (4.75–7) NA NA

DAS28-CRP 6 (5–6) NA 6 (5.25–6) NA NA

Values provide the median with IQR
F/M female/male, ESR erythrocyte sedimentation rate, CRP C-reactive protein, RF rheumatoid factor, Anti-CCP anti-cyclic citrullinated peptide, TCJ tender joint
count, SCJ swollen joint count, GH patient assessment of disease activity using a 100-mm visual analogue scale (VAS) with 0 = best and 100 = worst, DAS28-ESR
Disease Activity Score 28-erythrocyte sedimentation rate, DAS28-CRP Disease Activity Score 28-C-reactive protein, FACS flow cytometry, NA not account
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RA patients from OA patients and from HD obviously
(Fig. 2f); the models for the C1 and C2 regions both
failed to separate out the RA patients (Additional file 1:
Figure S4). Moreover, we calculated the normalized sig-
nal intensity of C3 regions as a C3 score for each patient
monocyte sample (see the “Methods” section). Unsur-
prisingly, the C3 scores of RA patients were significantly
higher than those for OA patients or HD (Fig. 2g). Thus,
we defined this normalized signal intensity of C3 regions
as “RA-associated ATAC-seq score” (RAAS), which
meaningfully represents the extent of RA-associated
chromatin dysregulation in patients.

RA-associated chromatin dysregulation is correlated with
the serum CRP levels of RA patients
To explore whether the RA-associated chromatin dys-
regulation we detected has clinical significance, we then
performed a Pearson correlation analysis between the
RAAS and the disease activity score 28 (DAS28) for the
RA patients, which is a widely utilized assessment for
RA clinical disease activity [12]. There are different ver-
sions of DAS28, including DAS28-CRP (based on the
serum CRP level) and DAS28-ESR (based on the ESR,
erythrocyte sedimentation rate) [24]. We detected a sig-
nificant positive correlation of RAAS with DAS28-CRP

Fig. 1 Chromatin accessibilities of major immune cell types in PBMCs from OA, RA, and HD. a Schematic outline of the study design, depicting
the workflow for ATAC-seq library construction of the immune cells from peripheral blood of OA patients, RA patients, and healthy donors, as
well as the data analysis and experimental verification steps. b Principal component analysis based all chromatin accessible regions for all
samples. Each dot is a sample, the samples in the figure are colour-coded by cell-type (top) and state (bottom). c Using a screening condition of
FDR < 0.01, | log2 fold change | > 4 and p < 0.001 for a pairwise comparison between all samples, the heatmap shows the peak intensity of
significantly different peaks after unsupervised clustering. Colour bars show the cell-type and state of samples. Unsupervised clustering of
differential peaks is performed using K-means algorithm with the k value of 3. d Representation of selected disease ontology categories obtained
from the analysis of cell type-specific (identified in Fig. 1c) chromatin accessible regions using the Genomic Regions Enrichment of Annotations
Tool (GREAT). HD, healthy donor; OA, osteoarthritis; RA, rheumatoid arthritis
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but not DAS28-ESR (Fig. 3a, Additional file 1: Figure
S5a), suggesting that the RAAS is associated with RA
disease activity and CRP levels may also correlate with
the RA-associated chromatin dysregulation. Therefore,
we examined whether there were any correlations be-
tween values of RAAS with CRP levels and other clinical
indicators of RA (TCJ, SCJ, RF, ESR, and ACPA), which
showed that only CRP had a significant correlation with

RAAS (Fig. 3b, Additional file 1: Figure S5b). Consistent
with previous reports [25, 26], we also found that the
RA patients had significantly higher serum CRP levels
compared to the OA patients (Fig. 3c).
Previous studies have shown that serum CRP stimula-

tion promotes differentiation of osteoclast (OC) and ex-
pression of proinflammatory genes in monocytes [11, 27].
So we speculated that the correlation between RAAS and

Fig. 2 RA-associated chromatin dysregulation in peripheral monocytes represents an RA signature. a Barplot showing the numbers differentially
accessible chromatin regions for each of the four examined immune cell types, binned according to the magnitude of the detected OA and RA vs.
HD, coloured according to the fold change. RA vs. HD (left), OA vs. HD (middle), and RA vs. OA (right). b Venn diagram for the overlap of differentially
accessible chromatin regions in the four examined immune cell types from the RA vs. OA analysis (|log2 fold change | > 1, p < 0.001 and FDR < 0.1). c
Heatmap of 8836 peaks obtained by comparing the ATAC-seq profiles of monocytes from healthy donors, OA patients, and RA patients (|log2 fold
change | > 1, p < 0.001 and FDR < 0.1). Each column is a sample; each row is an accessible region detected by ATAC-seq; peaks are organized based on
unsupervised clustering. Samples from the same group are marked with the same colour. Unsupervised clustering of differential peaks is performed
using K-means algorithm with the k value of 3. d Diagram for the average peak intensity signals of three clusters (C1, C2, and C3) for healthy donors,
OA patients, and RA patients. e GREAT was used to analyse C3 peaks for enrichment of disease ontology categories and MsigDB pathways. f Principal
component analysis based on the C3 peaks for all samples. Each dot is a sample. g Barplot of normalized signal intensity of C3 peaks (RAAS) in healthy
donors, OA patients and RA patients. The values of p were calculated with an unpaired t-test. ****p < 0.0001. Error bar represent standard deviation
(SD). HD, healthy donor; OA, osteoarthritis; RA, rheumatoid arthritis; C1, cluster 1; C2, cluster 2; C3, cluster 3
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CRP indicate some involvement of RA-associated chro-
matin dysregulation in OC differentiation and/or proin-
flammatory bioprocesses. Pursuing this, we annotated
C3 region-related genes with GREAT and tested the
enrichment for gene sets of “regulation of OC differen-
tiation” and “proinflammation” (from MSigDB [28]) in
C3 region-related genes (Additional file 5: Table S4).
We found that both gene sets were highly enriched in
C3 (Fig. 3d). For example, the genomic locus around
TNFRSF11A (RANK), the receptor of the RANKL signal

that is known to be induced by serum CRP [11] to pro-
mote OC differentiation [29], was preferentially more
accessible in RA patients compared to OA patients.
The chromatin state around IL-6, a gene known to be
induced by CRP that promotes the inflammatory patho-
genesis of RA [27], was also in a more accessible
chromatin state in RA patients than in OA patients
(Fig. 3e). These findings suggest that high serum CRP
of RA patients may induce RA-associated chromatin
dysregulation in monocytes.

Fig. 3 RA-associated chromatin dysregulation is positively correlated with the serum CRP levels of RA patients. a, b Linear regression analysis was used
to compare RAAS with DAS28-CRP score (a) and with CRP serum concentration (b). The shading represents the confidence interval. The solid line was
fit from linear regression, and the p value and the square of the coefficient of correlation (R2) were calculated using the “OLS” function in the
statsmodels package in Python. P < 0.05 were considered significant. c Barplot showing the average serum CRP levels in OA and RA patients. The
values of p were calculated with an unpaired t-test. **p < 0.01. Error bar represent standard error of the mean (SEM). d Venn diagrams showing the
numbers and p for overlap between the regulation of OC differentiation gene set or the proinflammatory gene set and C3-related genes (identified by
GREAT). P was calculated using Fisher’ exact test, ****p < 0.0001. e Normalized ATAC-seq profiles at the TNFRSF11A and IL-6 loci in OA and RA patients.
Shaded regions are more accessible representative peaks in RA. OC, osteoclast; OA, osteoarthritis; RA, rheumatoid arthritis; C3, cluster 3; DAS28-CRP:
disease activity score DAS28 based on C-reaction protein levels; RAAS, RA-associated ATAC-seq score
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CRP stimulation induced RA-associated chromatin
dysregulation in monocytes
To investigate whether CRP can induce RA-associated
chromatin dysregulation in monocytes, we incubated
PBMCs from OA patients with human recombinant
CRP or control medium for 12 h in vitro. Then we
sorted monocytes to apply ATAC-seq and RNA-seq
(Fig. 4a). After filtering and normalization, we obtained
reproducible and high-quality ATAC-seq and RNA-seq
data of CRP-stimulated and control monocytes
(Additional file 1: Figure S6). We first calculated the
RAAS values for CRP-stimulated monocytes and observed
a significant increase compared to non-stimulated con-
trols (Fig. 4b). Further, we examined the C1–C3 regions in
detail and found that only the C3 regions were signifi-
cantly more accessible in response to CRP stimulation
(Fig. 4c). These results establish that CRP stimulation does
induce RA-associated chromatin dysregulation. Our RNA-
seq analysis showed that CRP stimulation induced expres-
sion of myeloid leukocyte activation-related genes in the

monocytes from OA patients, according to the GO term
analysis of Metasacpe [30] (Additional file 1: Figure S7a).
Further GSEA analysis [31] of the RNA-seq data showed
that CRP stimulation significantly activated proinflamma-
tory and OC differentiation regulation-related genes in
monocytes from OA patients (Fig. 4d, Additional file 1:
Figure S7b, c), such as JAK2 [32] and SIGLEC15 [33] (Fig.
4e). Moreover, we found that the genes related to C3
regions were strongly enriched in the upregulated genes of
CRP-stimulated monocytes, compared to unstimulated
controls (Fig. 4f, Additional file 1: Figure S7d), TNFRSF1B
[34] for instance (Fig. 4g). This results further support that
RA-associated chromatin dysregulation is induced by CRP
stimulation.

CRP induces RA-associated chromatin dysregulation via
FRA2
CRP has been reported to activate monocytes in RA
[11], yet the mechanisms underlying RA-associated
chromatin dysregulation in CRP-activated monocytes

Fig. 4 CRP stimulation induced RA-associated chromatin dysregulation in monocytes. a Schematic depicting the experimental design for CRP
stimulation in vitro. PBMCs of OA patients were co-cultured for 12 h with or without CRP, and then monocytes were sorted and used to generate
ATAC-seq and RNAseq libraries. b Barplot showing RAASs before and after CRP stimulation in monocytes. The p value was estimated from paired
Student’s t test. **p < 0.01. Error bar represent standard error of the mean (SEM). c Diagrams for the average ATAC-seq signal intensity for C1-C3
peaks of control and CRP stimulation in monocyte. The values of p were calculated for the comparison of the average signals within 10 bp of the
peak centres using unpaired t-test. d, f GSEA enrichment plots highlighting RNA-seq signals for proinflammation (d), regulation of OC-
differentiation (d), and genes related to RA-associated dysregulation (f) of the running enrichment scores (ES) and positions of gene set members
among the rank-ordered list from the GSEA. e, g The barplot shows the gene expression of JAK2 (e), SIGLEC15 (e), and TNFRSF1B (g) in the control
and CRP stimulation. The p value was estimated from unpaired Student’s t test. *p < 0.05. CRP, C-reaction protein; OA, osteoarthritis; OC,
osteoclast; PBMC, peripheral blood mononuclear cell; CRPstim, CRP stimulation; C3, cluster 3; RAAS, RA-associated ATAC-seq score
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are poorly understood, and the impacts of any related
transcription factors (TFs) remain unknown. We
observed 410 significantly more and 386 significantly
less accessible chromatin regions after CRP stimulation
of OA-patient-derived monocytes (fold change > 1.5, p <
0.01; Fig. 5a; Additional file 6: Table S5). Then, we anno-
tated these regions with differential response to CRP,
obtained related genes by GREAT, and then performed

GO functional enrichment on these genes (see the
“Methods” section). We found significant enrichment of
GO functional terms such as “leukocyte differentiation”
and “osteoclast differentiation” in the peaks that were
upregulated after CRP stimulation (Additional file 1:
Figure S8a,b). And no immune-associated GO functional
terms were enriched in less accessible regions after CRP
stimulation (Additional file 1: Figure S8c). This suggested

Fig. 5 CRP induces RA-associated chromatin dysregulation via FRA2. a Heatmap showing changes in chromatin accessibility in monocytes
stimulated with the presence or absence of CRP for 12 h (p < 0.01 and |fold change| > 1.5). ATAC-seq was used to assess five independent
biological replicates. b The upregulated peaks of CRP-stimulation were enriched for transcription factors using HOMER and ranked by p. c
Volcano plot showing changes of gene expression in monocytes stimulated with CRP (10 μg/mL) in the presence or absence for 12 h; red dots
correspond to upregulated genes with significant (p < 0.05 and |fold change| > 1.5). RNA-seq was performed in three independent biological
replicates (monocytes derived from three different patients with OA). d Expression levels of genes FOSL2 were confirmed by real-time RT-PCR in
control and CRP stimulation group. The p value was estimated from unpaired Student’s t test. ****p < 0.0001. Error bar represent standard error of
the mean (SEM). e Visualization of ATAC-seq footprint for FRA2 motifs in control and CRP stimulation. The ATAC-seq signal across all the motif
binding sites in the genome were aligned on the motif and averaged. f Barplot shows expression level of genes with containing FRA2 binding
sites during control and CRP stimulation. Error bar represent standard error of the mean (SEM). The p value was estimated from unpaired
Student’s t test. ****p < 0.0001. g, h Normalized ATAC-seq profiles at the OCSTAMP(g) and IL-1B(h) locus in control and CRPstim. The shaded
regions are more accessible representative peaks containing the FRA2 binding site after CRP stimulation. i, j Expression levels of genes OCSTAMP
(i) and IL-1B (j) were confirmed by real-time RT-PCR in control and CRP stimulation group. Error bar represent standard error of the mean (SEM).
The p value was estimated from unpaired Student’s t test. *p < 0.05, **p < 0.01. CRP, C-reaction protein; CRPstim, CRP stimulation
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that genes related to upregulated regions are associated
with rheumatoid arthritis. Using ChromHMM, we then
found that upregulated regions tended to be located in
promoters and active enhancers, while downregulated re-
gions were more enriched in quiescent chromatin loci
with low transcriptional activity (Additional file 1: Figure
S8d). Given that ATAC-seq is able to capture TF binding
sites positioned within accessible chromatin regions, we
used HOMER [35] to identify any TFs with candidate
DNA-binding motifs significantly enriched among the 410
more accessible CRP-responsive regions. Strikingly, 6 of
the 8 top-ranked enriched known motifs belonged to TFs
of the AP-1 family (Fig. 5b), which was also highly
enriched in the RA-associated regions (Cluster 3) of RA
patients (Additional file 1: Figure S9). To determine which
TF(s) function to conduct the CRP stimulation signal, we
examined the RNA expression of AP-1 family TFs in
CRP-stimulated monocytes. Compared to untreated
controls, we found that only FOSL2 (FRA2) and ATF4
were significantly upregulated (fold change > 1.5, p < 0.05;
Fig. 5c; Additional file 7: Table S6). Viewed alongside our
motif enrichment results, we speculated that FRA2 is in-
volved in the CRP-induced RA-associated chromatin dys-
regulation in monocytes. We then investigated the mRNA
expression change of FOSL2 in response to CRP stimula-
tion and found a significant upregulation (Fig. 5d).
To verify whether FRA2 functions in the CRP-induced

RA-associated chromatin dysregulation, we depicted the
“footprint” of FRA2 and detected a higher DNA accessi-
bility and a firmer TF occupation flanking FRA2 motifs
in CRP-stimulated monocytes compared to unstimulated
controls (Fig. 5e), implying a stronger DNA-binding ac-
tivity of FRA2 after CRP stimulation. Moreover, we used
the target chromatin regions of Fra2 ChIP-seq data in
mouse monocytes [36] and lifted them to human gen-
ome (see the “Methods” section). We found that FRA2
targeted genes were significantly upregulated in mono-
cytes after CRP stimulation (Fig. 5f), further supporting
that FRA2 is involved in the CRP-induced RA-associated
chromatin dysregulation. For example, OCSTAMP and
IL-1B as target genes of FRA2 and contributing to the
RA pathogenesis [37, 38], their promoter regions became
more accessible after CRP stimulation (Fig. 5g, h). More-
over, the mRNA expression of OCSTAMP and IL-1B
were also significantly upregulated after CRP stimulation
(Fig. 5i, j). These findings suggested that CRP may in-
duce RA-associated chromatin dysregulation through
FRA2 in monocytes.

Discussion
In this study, we surveyed the major immune cell types
in the peripheral blood of RA patients. Although the
main disease symptoms of RA appear at the joints, the
recruitment of immune cells from the circulation is

known to be essential for the progression of RA. As an
autoimmune disease, the immunopathology of RA is
characterized by autoantibodies and infiltration of T
cells, B cells, and monocytes at the joints. Monocytes in
RA spontaneously produce cytokines such as TNF-α, IL-
1β, and IL-6, which inflame the articular joints and
thereby amplify the function of osteoclasts. Moreover,
monocytes themselves are able to differentiate into oste-
oclasts and contribute to cartilage damage [39]. Consist-
ently, our study revealed that chromatin changes in
monocytes dominated the RA-associated chromatin
dysregulation in peripheral blood, which exhibited
proinflammation and osteoclast differentiation features.
Recently, droplet-based single-cell ATAC-seq (scATAC-
seq) [40, 41] has become an powerful tool for genomic
studies, enabling the identification of cell type-specific
regulatory elements and disease-associated regulatory
networks at single-cell resolution [40, 42]. The applica-
tion of single-cell techniques can help researchers to re-
veal the details of regulome heterogeneities and discover
regulatory elements in cell subtypes, such as monocyte
subtypes, that are important in regulating the pathogen-
esis of rheumatoid arthritis; this provides new insights
into the aetiology and potential therapies of the disease.
We found that the serum CRP level of RA patients is

positively correlated with the extent of chromatin dys-
regulation in peripheral monocytes. Direct stimulation
of OA patient-derived PBMCs with CRP also led to RA-
like chromatin states. CRP is an important diagnostic
biomarker of RA, which functions to promote the in-
flammation and bone destruction in RA [11, 27]. Since
the production of CRP is induced by inflammatory cyto-
kines such as TNF-α, IL-1β, and IL-6 [6, 7], we guess
that these cytokines may also be involved in shaping the
chromatin dysregulation we observed in the peripheral
monocytes of RA patients. Consistent with this, it has
been reported that inflammatory cytokines are capable
of promoting epigenetic changes in RA patient mono-
cytes [43]. Figure 2e shows that the strongest “hit” in the
C3 area is “viral infectious disease”, but viral infection
does not cause the serum CRP level to rise, which also
shows that there are other factors in RA patients that
affect monocyte chromatin dysregulation.
Our study illustrated FRA2 is involved in the CRP-

induced RA-associated chromatin dysregulation. FRA2
belongs to the AP-1 TF family, which is composed of
subunits of DNA-binding proteins from four families
that all have similar DNA-binding motifs, including the
Jun family, Fos family, ATF/CREB family, and Maf
family [44]. Typically, AP-1 TFs form heterodimers or
homodimers to function in a variety of cellular processes
such as transformation, apoptosis, proliferation, and dif-
ferentiation. Our study combined chromatin and RNA
data and suggested that FRA2 may involve in regulation
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of the CRP-stimulated chromatin dysregulation. How-
ever, determining whether FRA2 forms homodimers or
heterodimers with other TFs to regulate the downstream
effects of CRP-induced, RA-associated chromatin dysregu-
lation in peripheral monocytes will require additional
experiments.
Given the known essential function of monocytes in

RA pathogenesis, it makes sense that drugs targeting
monocyte-associated proinflammatory signal pathways
generally confer good clinical efficacies for RA treat-
ment. For example, monoclonal antibodies against TNF
(e.g. etanercept, infliximab, golimumab, adalimumab)
and against IL-6R (e.g. tocilizumab, sarilumab) can re-
lieve the disease in 20–22% of methotrexate insufficient
responders. Drugs that target biomolecules downstream
of the JAK-STAT pathway (e.g. tofacitinib, baricitinib)
also confer similar efficacy [12]. Besides inflammation,
OC-differentiation of monocytes is another reason for
bone erosion in RA. However, it is reported that RA
patients with high levels of serum CRP exhibit limited
efficiency for immunosuppressive drugs such as Lefluno-
mide and still develop progressive bone erosion [45]. In
the present study, we found that CRP promotes RA
pathogenesis via inducing RA-associated chromatin dys-
regulation that involved in both proinflammatory and
OC-differentiation processes in peripheral monocytes,
suggesting that targeting FRA2 could help protect
against the aberrant activation of downstream genetic
networks that contribute to RA pathogenesis following
CRP-mediated chromatin dysregulation.

Conclusions
In summary, we profiled the main immune cell types in
the peripheral blood of RA and OA patients and healthy
donors using ATAC-seq and identified the RA-
associated chromatin dysregulation in monocytes as an
RA signature. We found that the RA-associated chroma-
tin dysregulation is related to the serum CRP level of RA
patients and can be induced by CRP stimulation in vitro.
Furthermore, we found FRA2 as a key transcription
factor, which is responsible for the CRP induced RA-
associated chromatin dysregulation. This RA-associated
dysregulation pathway and related regulators could be
potential therapeutic targets for RA.

Methods
Study design
The objective of this study was to use ATAC-seq to
identify the RA-associated chromatin dysregulation sig-
nature in immune cells from RA patients, OA patients,
and healthy donors. We collected fresh peripheral blood
from OA and RA patients with heparin sodium anticoagu-
lation tubes and obtained peripheral blood mononuclear
cells (PBMCs) using Ficoll-Paque gradient centrifugation

(Solarbio Science & Technology Co., Ltd., Cat No. P8900).
Among them, 26 RA samples and 23 OA samples were
used for ATAC-seq library construction; 8 OA samples
were used for in vitro CRP stimulation experiments (5 for
ATAC-seq, 3 for RNA-seq). 6 OA samples were used for
qPCR in vitro CRP stimulation experiments; 8 RA samples
and 5 OA samples were examined with flow cytometry
(SONY 800S). Details on the sample collection and pro-
cessing are described in the “Methods” section. Addition-
ally, we downloaded data of 14 healthy donors (HDs)
from the GEO database (GSE118189 [17], GSE74912 [18])
as healthy controls.

Patients recruit
We recruited RA patients (all patients were treatment
naive) and OA patients matched for age and sex from
December 2017 to May 2020; all donors received oral
and written information about the possibility that their
blood would be used for research purposes and gave
written consent. All of the RA patients met the 1987
American College of Rheumatology (ACR) classification
criteria [46]. The sample collection procedures passed
the ethical review for human biomedical research of the
University of Science and Technology of China (UST-
CEC201700012). Samples were obtained from the First
Affiliated Hospital of the University of Science and
Technology of China. The clinical data collected for the
patients are summarized in Additional file 2: Table S1.

Flow cytometry and cell sorting
We collected fresh peripheral blood from OA and RA
patients with heparin sodium anticoagulation tubes and
obtained peripheral blood mononuclear cells (PBMCs)
using Ficoll-Paque gradient centrifugation. PBMCs were
stained with fluorochrome-labelled anti-human mono-
clonal antibodies (Biolegend Inc., San Diego, CA) to
CD45 (clone HI30, Cat No. 304014 / 304007 / 304005),
CD14 (clone HCD14, Cat No. 325620), CD19 (clone
SJ25C1, Cat No. 363006), CD3 (clone OKT3, Cat No.
317343), CD4 (clone RPA-T4, Cat No. 300538), CD8α
(clone RPA-T8, Cat No. 301008), and CD16 (clone 3G8,
Cat No. 302008) for 15 min at room temperature,
followed by DAPI (Cat No. 422801) staining for 10 min.
Using a flow cytometer, antibody-stained patient lym-
phocytes were sorted into monocytes (DAPI-CD45+
CD3+CD19-CD14+), B cells (DAPI-CD45+CD3-CD19+
), CD4+ T cells (DAPI-CD45+CD3+CD19-CD4+CD8-),
and CD8+ T cells (DAPI-CD45+CD3+CD19-CD4+
CD8+). At least 50,000 cells were enriched. Post-sort pu-
rities of each cell type were ensured for > 95% with flow
cytometry. For monocyte subpopulation analysis, mono-
cytes were classified as classical (DAPI-CD45+CD3+
CD19-CD14++CD16-), intermediate (DAPI-CD45+CD3+
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CD19-CD14++CD16+), and non-classical (DAPI-CD45+
CD3+CD19- CD14+CD16+).

ATAC-seq library
ATAC-seq was performed as previously described [16, 47].
Libraries were sequenced with the Illumina HiSeq X Ten
platform; at least 10 million (18 million on average) paired-
end reads were generated per sample. The quality control
(QC) table of all analysed data is listed in Additional file 3:
Table S2.

RNA-seq library
Monocytes (DAPI-CD45+CD3+CD19-CD14+) were
sorted by flow cytometry using the same sorting strategy
described above. For monocytes, up to 1000 cells were
collected directly in the 0.2 ml PCR tube (KIRGEN Bio-
science Inc., Cat No. KG2511) and the RNA-seq library
was constructed using Smart-seq2 method [48] and
sequenced on the Illumina HiSeq X Ten platform; at
least 20 million paired reads were generated per sample.

In vitro stimulation of monocytes with CRP
PBMCs from OA patients were isolated using Ficoll-
Paque gradient centrifugation and then stimulated with
human recombinant CRP (0 μg/mL, 10 μg/mL) (R&D
Systems Europe Ltd. Cat No.1707-CR-200/CF). Cells were
cultured for 12 h in Roswell Park Memorial Institute
(RPMI) 1640 medium supplemented with 10% of heat-
inactivated human serum. After 12 h, control and stimula-
tion cells were harvested and monocytes were isolated by
flow cytometry using the same sorting strategy we used
for the RA peripheral blood samples. Finally, ATAC-seq
and RNA-seq library construction and sequencing was
performed using the same strategies described above.

Analysis of flow cytometry data
Flow cytometer data were analysed using the FlowJo
V.X.0.7 software (Tree Star). Statistical analyses and ap-
proximations were done with GraphPad Prism 7 soft-
ware (GraphPad Software Inc., USA).

Real-time quantitative polymerase chain reaction
The selected candidate genes were validated by qPCR.
Briefly, the cDNA was synthesized in accordance with
the instructions indicated in a Maxima H Minus Reverse
Transcriptase (ThermoFisher Scientific, USA, Cat No.
EP0751). Two-step PCR was performed by using SYBR
Green PCR Master Mix (Applied Biosystems, USA, Cat
No.4344463) in accordance with the instructions of the
manufacturer. The reaction was run on an LightCycler96
fluorescent sequence detection system (Roche). Gene
expression was quantified relative to the expression of
the housekeeping gene GAPDH and normalized to con-
trol by standard 2-ΔΔCT calculation. Primer sequences of

gene GAPDH used are 5′-GGAGCGAGATCCCTCCAA
AAT-3′ and 5′-GGCTGTTGTCATACTTCTCATGG-3′;
primer sequences of gene FOSL2 used are 5′-CAGAAATT
CCGGGTAGATATGCC-3′ and 5′-GGTATGGGTT
GGACATGGAGG-3′; primer sequences of gene IL-1B used
are: 5′-AGCTACGAATCTCCGACCAC-3′ and 5′-CGTT
ATCCCATGTGTCGAAGAA-3′; primer sequences of gene
OCSTAMP used are 5′-CACCCTGGGTATGGAGCAG-3′
and 5′-CTGGTGAGTGGTATTGAGGAGA-3′.

Primary data processing and peak calling of ATAC-seq
ATAC-seq raw data was processed using a published
ATAC-seq pipeline called ATAC-pipe [19]. After
accounting for adapters, we used the “--MappingQC”
function in the ATAC pipeline (option -c 50) to map
high-quality reads to the hg19 genome using Bowtie2
[49]. PCR duplicates were removed and mapped reads
were then shifted + 4/− 5 bp depending on the strand of
the read, so that the first base of each mapped read
represented the Tn5 cleavage position. For samples with
biological replicates, we merged the fastq files as a sam-
ple for subsequent data processing. All mapped reads
were then extended to 50 bp, centred by the cleavage
position. Reads mapped to repeated regions and
chromosome M were removed. The peaks calling steps
used were based on the previously published ATAC-
pipe “--PeakCalling” with options --p1 3 --q1 5 --f1 1 -u
--pipeup 30. Samples from the same cell type classified
within the same clinical condition (i.e. HD, OA, or RA)
were grouped for peak calling, and peaks for all categor-
ies were then merged together to generate a unique peak
list. We used quantile normalization to normalize the
raw read counts after removing chromosome Y and to
generate log2 peak intensity for downstream analysis.

Primary data processing of RNA-seq
After removing low quality and adapter sequences, the
remaining clean reads were aligned to the hg19 genome
using STAR [50, 51]. We used bedtools “genomeCovera-
geBed” function to get a bedGraph file with histogram of
coverage values [52].

Differential analysis
For ATAC-seq, each cell type was compared with all
other cell types, and cell type-specific peaks were filtered
with |log2 fold change| > 4, p < 0.001, FDR < 0.01 and the
average of log2(peak counts) > 3 across all samples. For
each cell type, a pairwise comparison among HD, OA,
and RA samples was performed, and disease-specific
peaks were filtered with |log2 fold change| > 1, p < 0.001,
and FDR < 0.1. An unpaired Student’s t-test and
Benjamini-Hochberg multiple test were used to calculate
the p and FDR values between any pair of samples. Un-
supervised clustering of differential peaks is performed
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using K-means algorithm. For ATAC-seq stimulated by
CRP in vitro, we aligned the fastq data to the hg19 gen-
ome according to the ATAC-pipe described above. We
then used the ATAC-seq peaks of monocytes from the
RA, OA, and HD samples as input and calculated the
peak intensity in the CRP-stimulated samples. Differen-
tial peaks were filtered by fold change > 1.5, p < 0.01. P is
calculated using paired t-test. For RNA-seq, we used raw
read counts mapped to each gene as input and used
DEseq2 [53] to obtain a standardized expression matrix.
The differential genes were filtered as fold change > 1.5,
p < 0.05, and the sum of counts across all samples is
greater than 5. P is calculated using independent sample
unpaired t-test.

Genome segmentation analysis
The genome location classification for monocytes was
performed using ChromHMM according to the Epige-
nomic Roadmap Consortium [54]. The chromatin states
were classified with ChromHMM 25-state classification
and then combined into 10 states, namely, “activate
enhancer”, “primed enhancer”, “poised enhancer”, “weak
enhancer”, “Tx regulator”, “promoter”, “transcription”,
“quiescent/low”, “heterochromatin”, and “other”. The
chromatin states of peaks were annotated by intersecting
the ChromHMM-defined states using bedtools.

Functional enrichment analysis by Metascape
To perform the biology function enrichment analysis of
differential expression gene, we used the Metascape [30]
with the default parameters. The terms with –log10
p > 4.5 were selected.

Functional enrichment and associated genes analysis by
GREAT
The significant differential peaks were uploaded to
GREAT (version 3.0.0, Human GRCh37) for functional
annotations [20]. Enrichment analyses of Biological Pro-
cesses, Disease Ontologies, and MSigDB pathways of the
peaks were performed using GREAT with the default
options of “Basic Plus Extended Model”. Genes output
by GREAT were taken as peak-related genes.

Peak cluster score calculation
Cluster scores of C1-C3 were calculated by dividing the
sum of the peak intensities of each cluster by the sum of
the total peak count, multiplied by 100.The C3 score
was defined as RA-associated ATAC-seq score (RAAS).

Calculation of the relationship between RAAS and patient
clinical data
The “OLS” function in the statsmodels Python package
was used to perform linear regression as an approach to
measure the correlation of RAAS with the clinical data

of RA patients including DAS28-CRP, DAS28-ESR, CRP,
ESR, TCJ, SCJ, RF, and Anti-CCP. R-squared is a
goodness-of-fit measure for linear regression models,
and p characterizes the probability that two variables are
significantly linearly related.

GSEA enrichment analysis
We first arranged the gene matrix of log2 fold change
(CRPstim/control) in descending order and then use the
R package GSEABase to calculate the enrichment score
and p of the gene set downloaded from MSigDB [28] in
the gene matrix. The values of p less than 0.05 are
considered to be significantly enriched. “Proinflamma-
tory gene set” and “regulation of OC Differentiation gene
set” are available from MSigDB with ID GO:0050729
(https://www.gsea-msigdb.org/gsea/msigdb/cards/GO_
POSITIVE_REGULATION_OF_INFLAMMATORY_
RESPONSE) and GO:0045670 (http://www.gsea-msigdb.org/
gsea/msigdb/geneset_page.jsp?geneSetName=GO_
REGULATION_OF_OSTEOCLAST_DIFFERENTIATION).

TF motif analysis
The input motif set we used was obtained from jaspar
(http://jaspar.genereg.net/) for vertebrates. We searched
for enriched motifs in differentially accessible regions
using the “findMotifsGenome.pl” script in HOMER [35].
We generated a peak versus motif matrix, where each
row is a peak and each column is a motif. We applied
these two matrixes to Genomica [55], as input for the
ModuleMap algorithm. Then, we obtained a motif-by-
sample matrix, where each row is a motif, each column
is a sample, and the values in this matrix represent the
significance of enrichment by the –log (p value).

TF foot-printing analysis
TF foot-printing analysis was processed using ATAC-
pipe. To analyse the footprint of each TF, ATAC-pipe
function “--Footprint” scans TF-binding sites by invok-
ing motif matrix with HOMER, filters out sites with
CRP stimulation significant changes peak list to obtain
the TF-binding sites, and counts for the per base Tn5
cleavage events around the centres of TF-binding sites
(− 100 to 100 bp).

ChIP-seq analysis
ChIP-seq data on Fra2 of mouse monocytes were ob-
tained from previously published articles [36]. We used
UCSC [56] lifting tool liftover (http://genome.ucsc.edu/
cgi-bin/hgLiftOver) to convert genome position from
mm10 genome assembly to hg19 genome assembly [56].
Then, we used GREAT to find the target genes of FRA2
(explained in detail in the “Annotating ATAC-seq peak
regions” method).
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Statistics
To analyse the significant change in cluster peak scores
stimulated by CRP, we used paired Student’s t test. Fish-
er’s exact test is used to calculate p to test the signifi-
cance of associations between gene sets. The remaining
data in this study were assessed using unpaired Student’s
t tests. The levels of significance were indicated as fol-
lows: *p < 0.05, **p < 0.01, ***p < 0.001, and ****p <
0.0001.
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Additional file 1: Figure S1. Immune cell sorting strategy and quality
control of ATAC-seq profiles. a Gating strategy for flow cytometry. b Pur-
ity of cells after sorting by flow cytometry. c Repeatability between two
replicates for ATAC-seq data. d Within 2 kb of the promoter, the reads in
the ATAC-seq data were concentrated in the TSS region. e Analysis of
ATAC-seq data to display representative cell markers of immune cells. OA,
osteoarthritis; RA, rheumatoid arthritis. Figure S2. The chromatin accessibil-
ities profiles for immune cells from OA patients, RA patients, and healthy do-
nors. a Flow cytometry analysis of the proportion of monocyte
subpopulations in patients with OA (n = 5) and RA (n = 8). P values were
assessed using an unpaired Student’s t-test, ns: p > 0.05. Error bars represent
standard error of the mean (SEM). b Heatmap of chromatin dysregulation
peaks obtained by comparing the ATAC-seq profiles of B cells and T cells
from HDs, OA patients, and RA patients (|log2FD| > 1, p < 0.001 and FDR <
0.1). Each column is a sample; each row is a dysregulated chromatin region.
The elements were organized based on unsupervised clustering. c Repre-
sentation of selected top disease ontology categories obtained from the
analysis of Cluster 1–2 regions using GREAT. Samples from the same group
are marked with the same colour. HD, healthy donors; OA, osteoarthritis; RA,
rheumatoid arthritis; C1, cluster 1; C2, cluster 2; C3, cluster 3. Figure S3. The
functional genomic characteristics of Cluster 3. a Normalized ATAC-seq pro-
files at the IL-1B and JAK1 loci in HD, OA and RA. Shaded regions indicate
peaks that are more accessible in RA patients. b Distribution of genomic fea-
tures of Cluster 3 peaks. Different genomic features are annotated with dif-
ferent colours. HD, healthy donor; OA, osteoarthritis; RA, rheumatoid arthritis.
Figure S4. Principal component analysis based on the Cluster 1 (a) and
Cluster 2 (b) regions for HDs, OA patients, and RA patients. Each dot is a
sample, the samples in the figure are coloured by disease states. HD, healthy
donors; OA, osteoarthritis; RA, rheumatoid arthritis. Figure S5. The relation-
ship between peak clusters and the clinical status of patients. a, b Linear re-
gression analysis was used to correlate RAAS with DAS28-ESR (a), TCJ, SCJ,
RF, ESR, and Anti-CCP(b). The shading areas represent the 95% confidence
intervals. The solid line was fit from linear regression, and the p value and
the square of the coefficient of correlation (R2) were calculated using the
‘OLS’ function in the statsmodels package in Python. P value < 0.05 were
considered as significant. DAS28_ESR: disease activity score DAS28 based on
erythrocyte sedimentation rate; SJC, joint swelling count; TJC, tender joint
count; ESR, erythrocyte sedimentation rate; Anti-CCP, anti-cyclic citrullinated
peptide; RF, rheumatoid factor; RAAS, RA-associated ATAC-seq score. Figure
S6. Quality control of RNA-seq and ATAC-seq of CRP stimulated monocytes
in vitro. a Within 2kb of the promoter, the reads in the ATAC-seq data were
concentrated in the TSS region. b Repeatability between two replicates for
ATAC-seq data. c Box plot showing the distribution of normalized counts
for RNA-seq data. Each bar represents a sample. d Principal component ana-
lysis of CRPstim and control group based on expression of all genes. Each

point is a sample, and the samples in the figure are coloured by groups.
CRPstim, CRP stimulation. Figure S7. CRP stimulation promotes OC-
differentiation and proinflammation in OA-derived monocytes. a Heatmap
showing changes in gene expression in monocytes stimulated with CRP (10
μg/mL) for 12 hours (paired t-test p < 0.05 and fold change > 2). RNA-seq
was performed for three independent biological replicates (monocytes de-
rived from three different patients with OA). (right) Metascape was used to
annotate genes; enriched GO terms after CRP stimulation. b, c Heatmaps
show the expression levels of genes in the proinflammation (b) and regula-
tion of OC-differentiation (c) gene sets. d Heatmap showing the expression
levels of the genes of cluster 3 regions annotated by GREAT (identified in
Fig. 2c). CRPstim, CRP stimulation; OC, osteoclast; C3, cluster 3. Figure S8.
The functional genomic characteristics of differential regions after CRP
stimulation. a Enriched GO terms of genes related to the peaks upregulated
after CRP stimulation by GREAT. b Normalized ATAC-seq profiles at the
CSF1R and SCIN loci in the control and CRPstim groups. Shaded regions indi-
cate peaks that are more accessible in CRPstim. c Enriched GO terms among
genes related to the peaks that became less accessible after CRP stimulation
by GREAT. d Distribution of genomic features in the upregulated (left) and
downregulated (right) regions after CRP stimulation. Different genomic fea-
tures are annotated with different colours. Figure S9. Transcription factor
motifs enrich in cluster 3. a Enrichment of transcription factor motifs in C3
for all samples. Each row is a motif, and each column is a sample. Values in
the matrix indicate the significance of enrichment estimated by Genomica
in terms of –Log10 p. The top ranked motifs are shown. The colour bar indi-
cates the category of each sample: HD, healthy donor; OA, osteoarthritis; RA,
rheumatoid arthritis. b Transcription factor motifs enriched in the Cluster 3
peaks using HOMER and ranked by p value.

Additional file 2: Table S1. List of information for patients with RA and
OA.

Additional file 3: Table S2. QC table for all analysed ATAC-seq
samples.

Additional file 4: Table S3. The list of differentially accessible regions
in monocytes among RA, OA, and healthy donors.

Additional file 5: Table S4. The list of C3 related genes.

Additional file 6: Table S5. The list of significantly changed chromatin
accessible regions and peak related genes in OA-patient-derived mono-
cytes after CRP stimulation.

Additional file 7: Table S6. The list of differential expressed genes in
OA-patient-derived monocytes after CRP stimulation.
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