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Denoising spatial epigenomic data via deep 
matrix factorization
 

Shuyan Wang1,2,8, Hao Xu2,3,8, Junyu Wang    2, Yao Xiao4,5, Shanghao Dai2, 
Junyi Lu2, Ruoxuan Cao6, Xuejin Chen7 & Kun Qu    1,2,3,4 

Spatial epigenomics (SE) technologies profile epigenomic landscapes within 
intact tissues, preserving spatial context and enabling the study of gene 
regulatory mechanisms in situ. However, current SE datasets typically suffer 
from low signal detection, substantial noise and extremely sparse peak 
matrices, which pose considerable challenges for downstream analysis. 
Here we introduce SPEED (spatial epigenomic data denoising), a deep matrix 
factorization framework that leverages atlas-level single-cell epigenomic 
data and spatial context to impute and denoise SE data. In comprehensive 
benchmarks on both simulated data and real SE tissue datasets, SPEED 
outperformed five state-of-the-art methods across diverse tissues and 
technologies. Moreover, SPEED’s denoised outputs facilitated downstream 
analyses such as differential chromatin accessibility analysis, epigenomic 
spatial domain identification and gene activity inference. Collectively, our 
results indicate that SPEED is a generalizable tool for improving data quality 
and biological insights in SE.

Cellular function within tissues is tightly linked to the spatial organiza-
tion of cells1–3. Recent advances in spatial omics technologies enable 
the simultaneous profiling of epigenomic, transcriptomic or prot-
eomic landscapes while preserving spatial context, facilitating the con-
struction of spatially resolved single or multi-omics maps4–11. Among 
these, spatial epigenomics (SE) technologies, including spatial ATAC12, 
spatial-ATAC-seq9, epigenomic MERFISH7, spatial-ATAC-RNA-seq8, 
MISAR-seq13, spatial-CUT&Tag4, spatial-CUT&Tag-RNA-seq8, Slide-tags10 
and spatial-Mux-seq11, enable genome-wide epigenomic profiling at 
spatial resolution. These technologies have been widely applied to 
mouse embryonic4,7–9,11–13 and brain tissues4,7–9,11, as well as to disease 
models10–12,14 and human samples8,9, providing insights into tran-
scriptional regulatory mechanisms within tissues. However, SE tech-
nologies remain challenged by lower signal detection, increased 

noise and much sparser peak matrices compared with single-cell 
epigenome sequencing.

For example, the current spatial assays for transposase-accessible 
chromatin using sequencing (ATAC-seq) methods (including spatial 
ATAC12, spatial-ATAC-seq9 and spatial-ATAC-RNA-seq8) generate SE 
data in which the transcription start site enrichment score and the 
fraction of reads in peaks are lower than those obtained from single-cell 
epigenome sequencing of the same tissue12,15,16 (Supplementary Fig. 1). 
This limitation persists despite the relatively large spot diameters 
(20–50 μm), which typically encompass multiple cells. These issues 
hinder downstream analyses and limit the applicability of SE technolo-
gies to complex biological contexts, such as disease tissues.

Several computational approaches have been developed to extract 
meaningful biological insights from noisy and sparse epigenomic 
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between peaks from large-scale single-cell epigenomic reference data 
and transfers this knowledge to the spatial data, effectively mitigating 
extreme sparsity and noise in SE datasets. In addition, SPEED encodes 
the spatial arrangement of spots and can incorporate histological 
image features, enabling it to preserve spatially coherent patterns in the 
data. Consequently, SPEED achieves better performance in denoising 
and dimensionality reduction compared with unsupervised methods.

To assess its performance, we systematically evaluated SPEED 
against five state-of-the-art methods using a range of datasets, includ-
ing 4 simulated datasets and 14 real tissue sections obtained with 
spatial ATAC-seq and spatial cleavage under targets and tagmentation 
(CUT&Tag) technologies. Our results demonstrate that SPEED more 
accurately imputes spatial chromatin accessibility and histone modi-
fication signals while outperforming existing methods in denoising, 
dimensionality reduction, differential chromatin accessibility analysis 
and epigenomic spatial domain identification. Collectively, these find-
ings indicate that SPEED is a promising tool for SE data denoising and 
downstream analysis across multiple SE modalities.

Results
Overview of SPEED
SPEED utilizes atlas-level single-cell epigenomic data as prior knowl-
edge to perform SE data denoising and downstream analysis through 
a two-step framework. First, SPEED applies DMF to decompose the 
raw peaks-by-cells matrix from single-cell epigenomic data into two 
low-dimensional embeddings representing peak and cell features 
(Fig. 1 and Methods). The reconstructed matrix is obtained by com-
puting the product of these embeddings, with a cosine distance loss 
function minimizing the distance between the reconstructed and 
raw matrices to improve signal retention. Next, SPEED applies DMF 
to the peaks-by-spots matrix from SE data, generating peak and spot 
embeddings. To transfer learned peak-to-peak relationships from 
large-scale single-cell data, SPEED constrains the similarity between 
spatial peak embeddings and single-cell peak embeddings. In parallel, 
spot embeddings aggregate epigenomic signal embeddings, spatial 
location embeddings and image embeddings, extracted via three dis-
tinct neural networks. The spatial location embeddings are trained 
using relative spot coordinates, while the optional image embeddings 

data (Supplementary Fig. 2). For instance, scBasset utilizes deep con-
volutional neural networks to predict chromatin accessibility from 
DNA sequence features17; SCALE integrates a variational autoencoder 
with a Gaussian mixture model to extract latent representations from 
single-cell ATAC-seq (scATAC-seq) data18; scOpen uses non-negative 
matrix factorization for scATAC-seq imputation19; and cisTopic applies 
latent Dirichlet allocation to infer topic distributions of cells and 
genomic regions in scATAC-seq data20. However, these methods do 
not explicitly incorporate spatial information, making them subopti-
mal for SE data analysis.

spaPeakVAE is a spatially informed method that uses a deep gen-
erative spatial variational autoencoder to model spatial ATAC-seq data 
while capturing spatial correlations between spots21. However, it relies 
on Gaussian process priors to model spatial information, requiring 
predefined kernel functions to represent correlations across different 
spatial locations. Furthermore, all these methods use unsupervised 
learning, which is inherently constrained by the extreme sparsity and 
noise of SE data.

Concurrently, large-scale single-cell epigenomic atlases have 
become available, providing comprehensive chromatin accessibility 
profiles across various tissues, including the mouse embryo15, mouse 
brain22, human brain23 and human primary tissues24. These high-quality 
single-cell epigenomic datasets offer valuable prior information for 
modeling SE data, enabling more accurate analyses. To fully leverage 
this prior information, a computational framework is required that 
can both denoise SE data and effectively integrate external references. 
Although originally developed for recommender systems, deep matrix 
factorization (DMF) captures complex dependencies and recovers 
meaningful signals from highly sparse and noisy data25,26, providing a 
flexible and powerful solution for omics denoising. By incorporating 
atlas-level single-cell epigenomic data into the DMF framework, peak 
representations in SE data can be constrained to align with high-quality 
single-cell priors, thereby improving signal recovery and enhancing 
downstream analyses.

Here, we propose SPEED (spatial epigenomic data denoising), 
a DMF framework that leverages atlas-level single-cell data and spa-
tial information for SE data imputation and analysis. Unlike existing 
approaches, SPEED automatically learns the inherent relationships 
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Fig. 1 | Workflow of SPEED. SPEED uses DMF to independently decompose the 
peak matrices from single-cell and spatial epigenomic data, while imposing a 
constraint on the similarity between spatial peak embeddings and single-cell 
peak embeddings to facilitate transfer learning. Spot embeddings are formed by 
aggregating epigenomic signal embeddings, spatial location embeddings and 
image embeddings, which are extracted through three distinct neural networks. 

Psc and Psp respectively denote the peak embeddings for single-cell and spatial 
data, and Espimg represents the image embedding. The parameter α controls the 

strength of alignment to single-cell embeddings, and β regulates the 
contributions of image features in the loss function. MSE, mean squared error; 
emb., embedding.
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capture additional structural information from high-quality stained 
images. The loss function consists of three components: the cosine 
distance loss between the reconstructed and raw matrices, the mean 
squared error between the peak embeddings of spatial and single-cell 
data weighted by α, and the L2 regularization constraint on the image 
embeddings weighted by β. After training, the final product of the spot 
and peak embeddings represents the denoised SE signal matrix, where 
spot embeddings integrate epigenomic, spatial and image features.

SPEED distinguishes itself from existing SE data analysis meth-
ods in several key aspects: (1) it leverages atlas-level single-cell epig-
enomic data as a reference to infer peak-to-peak relationships as prior 
knowledge; (2) it uses cosine distance loss for matrix factorization, 
enhancing the signal-to-noise ratio of imputed SE data; (3) it adaptively 
integrates spatial and image features to refine low-dimensional spot 
embeddings, particularly in structurally similar tissue regions. The 
learned low-dimensional embeddings capture epigenomic, spatial 
and image features, enabling robust downstream analyses such as dif-
ferential chromatin accessibility analysis, epigenomic spatial domain 
identification and gene activity inference. In addition, SPEED provides 
a pretrained model for mouse embryo data, leveraging an atlas refer-
ence of 312,248 scATAC-seq profiles spanning seven developmental 
stages12,15,16,27,28 (Supplementary Data 1). This eliminates the need for 
de novo training, making SPEED an efficient tool for SE data analysis. 
Furthermore, its user-friendly design allows researchers to leverage 
publicly available or self-generated single-cell epigenomic datasets 
to train models for various tissue types beyond the mouse embryo.

Denoising epigenomic data in simulated datasets
To assess SPEED’s denoising performance, we generated simulated SE 
datasets using scATAC-seq data from 16 tissue types15. Cells were aggre-
gated into simulated spots, providing genome-wide chromatin acces-
sibility profiles as the ground truth. We further assigned cells from four 
randomly picked tissue types to spots in distinct spatial distribution 
patterns—stripe-like, block-like, circular-like and dispersed—to evalu-
ate SPEED’s ability to identify epigenomic spatial domains. To mimic 
SE data sparsity, we introduced dropouts with an average probability 
of 90%, generating raw signal matrices for model input (Methods).

Using an independent scATAC-seq dataset as a reference, we 
applied SPEED to denoise the simulated data (Fig. 2a,b). We applied a 
commonly used metric, namely the area under the receiver operating 
characteristic curve (AUROC) to evaluate the accuracy of binary clas-
sification models after denoising. A higher AUROC indicates higher 
similarity between the imputed chromatin accessibility and the ground 
truth in the simulated data, and thereby better denoising performance 
(Methods). We found that SPEED outperformed five existing spatial/
single-cell ATAC-seq denoising methods (Fig. 2a), achieving higher simi-
larity to the ground truth (Fig. 2c, AUROC per spot/peak = 0.86/0.82) 
than other methods (AUROC per spot/peak = 0.77–0.86/0.38–0.77).

We then used the adjusted Rand index (ARI) and normalized 
mutual information (NMI) to assess the similarity between the denoised 
spatial distribution of spots and the ground truth in simulated data. 
Higher ARI and NMI values indicate better spatial domain identification 
by denoising approaches applied to the dropout dataset (Methods). We 
found that SPEED was the only method capable of recovering the spatial 
distribution of dispersed spots (Fig. 2b), and its predicted epigenomic 
spatial domains matched the ground truth more closely than those of 
other methods (Fig. 2d, ARI/NMI = 0.98/0.97 versus 0.15–0.90/0.20–
0.90 for other methods). Finally, we used the Davies–Bouldin index 
(DBI) and silhouette width (SW) metrics to evaluate the compactness 
of spots within the same ground truth cluster and the separation of 
spots between different clusters in the low-dimensional embedding 
space. Lower DBI and higher SW indicate a clearer distinction of spot 
clusters in the denoised embeddings and thereby a better identification 
of spatial domains (Methods). We found that SPEED-derived embed-
dings provided better separation of ground truth regions compared 

with other approaches (Fig. 2e, DBI/SW = 0.93/0.85 for SPEED versus 
DBI/SW = 4.94–1.07/0.51–0.81 for other methods). These results dem-
onstrate SPEED’s effectiveness in SE data denoising and epigenomic 
spatial domain identification.

Recovering tissue-specific chromatin accessibility signals
To evaluate SPEED’s performance on real SE data, we applied it to the 
ATAC modality of the E13 mouse embryo spatial-ATAC-RNA-seq dataset 
from Zhang et al., a dataset with well-characterized tissue spatial dis-
tributions8. As a reference, we compiled single-cell or single-nucleus 
ATAC-seq data from five publicly available datasets, encompassing 
312,248 cells across seven developmental stages (embryonic day 
(E)11.5–E18)12,15,16,27,28 (Supplementary Data 1). Tissue-specific chromatin 
accessible sites (TSCAS) were identified through differential acces-
sibility analysis of single-cell or bulk ATAC-seq data from embryonic 
mouse tissues15,29. TSCAS were then defined as the ground truth for 
evaluating denoising performance in spatial ATAC-seq data, comprising 
53,876 TSCAS identified from E13.5 mouse embryo scATAC-seq data and 
162,482 TSCAS from bulk ATAC-seq data of the same developmental 
stage (Supplementary Fig. 3 and Supplementary Data 2). We used fold 
change (FC) and Moran’s I to assess the specificity and spatial autocor-
relation of all the TSCAS (Methods).

In the raw spatial ATAC-seq data, chromatin accessibility signals 
at TSCAS appeared diffusely distributed, lacking spatial specific-
ity (Fig. 3a). After applying SPEED, these signals became distinctly 
localized and continuous in expected tissue regions (Fig. 3a,b and 
Supplementary Figs. 4 and 5), as reflected by a higher FC of 2.42 versus 
1.73 and an increase in Moran’s I from 0.02 to 0.84. Compared with 
other methods, SPEED achieved the highest specificity and spatial 
autocorrelation of ATAC signals at TSCAS (Fig. 3b, FC of 2.42 for SPEED 
versus 0.51–1.80 for other methods, Moran’s I = 0.84 versus 0.61–0.81 
for other methods), indicating its ability to effectively remove noise 
while preserving biologically relevant spatial patterns.

To systematically assess SPEED’s ability to identify TSCAS, we 
used E13.5 mouse embryo scATAC-seq and bulk ATAC-seq data (from 
ENCODE29) as the ground truth and computed the Jaccard index ( JI) to 
measure the overlap between differentially accessible chromatin sites 
identified by different methods and the ground truth datasets (Meth-
ods). SPEED exhibited higher similarity to the ground truth (Fig. 3c, 
JI of bulk/single-cell data, 0.14/0.11) compared with other methods 
(Supplementary Fig. 6, JI of bulk/single-cell data, 0.06–0.11/0.03–
0.06). These results demonstrate that SPEED improves the accuracy 
of TSCAS identification in spatial ATAC-seq data.

We further investigated whether SPEED preferentially enhances 
signals at cis-regulatory elements compared with other chromatin sites. 
Using chromatin state annotations from the ENCODE database30,31 for 
the E13.5 mouse embryonic forebrain and hindbrain, we categorized 
all peaks into five major groups: promoter, enhancer, transcription, 
heterochromatin and others. We then calculated the signal inten-
sity ratios of enhancer and promoter regions relative to other chro-
matin states before and after denoising (Methods). SPEED-denoised 
data exhibited the highest signal intensity ratios for promoters and 
enhancers compared with both raw data and other denoising meth-
ods (Fig. 3d, for enhancers, 2.36 for SPEED versus 1.90–2.24 for other 
methods; for promoters, 4.72 for SPEED versus 3.55–4.43 for other 
methods). This indicates that SPEED effectively enhances signals at 
cis-regulatory elements.

Identifying epigenomic spatial domains
Identifying epigenomic spatial domains is a critical step in spatial omics 
data analysis. We used the E13 mouse embryo system as an example, 
where tissue domain distributions were well characterized by tissue 
images, including the eye, forebrain, hindbrain, ventricles, limbs and 
spine, providing a ground truth reference for evaluating spatial domain 
identification (Fig. 4a). To quantitatively assess the performance of all 
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a    Denoised chromatin accessibility of chr16:29893731–29894231
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methods in epigenomic spatial domain identification, we also defined 
two additional ground truth references: (1) spatial domains annotated 
by joint RNA–ATAC clustering from Zhang et al.8 (Fig. 4b) and (2) spatial 
domains inferred from spatial transcriptomics data using SPACEL32 
(Fig. 4c).

Because the raw spatial ATAC-seq data from the E13 mouse embryo 
spatial-ATAC-RNA-seq dataset are highly noisy and sparse, cluster-
ing based on raw data failed to capture the known tissue structures 
(Fig. 4d). However, when we applied SPEED to the same dataset and 
clustered the low-dimensional embeddings of spots using the Leiden 
algorithm, we observed that SPEED successfully identified all tissue 
regions distinctly (Fig. 4e and Methods), closely aligning with known 
structures observed in tissue images, as well as the joint RNA–ATAC 
annotations from Zhang et al. and the spatial domain annotations by 
SPACEL. These results indicate that the low-dimensional embeddings 
generated by SPEED, which integrate epigenomic profiles and spatial 
information, enable precise spatial domain identification.

When we applied all the denoising approaches to the same dataset, 
we found that only SPEED can successfully recover all tissue structures, 
particularly in resolving the hindbrain subregion HB2 ( JI of 0.64/0.37 
for SPEED versus JI of 0.05–0.19/0.04–0.15 for other methods), whereas 
other methods failed to capture at least one tissue type and often 
produced mixed or fragmented domains (Supplementary Figs. 7 and 
8a). For example, SCALE and scOpen failed to identify the eye and 
HB2, while spaPeakVAE, pycisTopic and scBasset failed to capture the 
spine and HB2.

To further quantify SPEED’s performance in spatial domain identi-
fication compared with other methods, we evaluated four key metrics: 
ARI, NMI, DBI and SW as above. We found that SPEED-derived spatial 
domains exhibited stronger agreement with the joint RNA–ATAC anno-
tations (Fig. 4f, ARI/NMI = 0.35/0.49 for SPEED versus ARI/NMI = 0.13–
0.31/0.25–0.46 for other methods). In addition, SPEED-derived 
embeddings yielded the best DBI/SW values compared with other 
methods, indicating superior tissue-specific separation (Fig. 4g, 
DBI/SW = 2.59/0.50 for SPEED versus DBI/SW = 7.39–3.03/0.40–0.49 
for other methods). These findings were further confirmed using 
SPACEL-annotated spatial domains as reference, where SPEED con-
sistently achieved the best ARI/NMI and DBI/SW scores (Fig. 4h, ARI/
NMI = 0.26/0.50 for SPEED versus ARI/NMI = 0.09–0.18/0.24–0.38 
for other methods; Fig. 4i, DBI/SW = 2.45/0.49 for SPEED versus DBI/
SW = 6.18–3.33/0.34–0.47 for other methods). These results indicate 
that, regardless of the ground truth reference used, the epigenomic 
spatial domains predicted by SPEED consistently align more accurately 
with known tissue structures.

To further validate SPEED’s ability to identify spatial domains 
across different SE technologies, we applied it to the mouse embry-
onic brain MISAR-seq dataset from Jiang et al.13. This dataset contains 
spatial ATAC-RNA-seq data across four developmental stages (E11.0, 
E13.5, E15.5 and E18.5) with eight slices, each paired with hematoxylin 
and eosin (H&E)-stained images and manual tissue annotations (Fig. 4j 
and Supplementary Fig. 9). To further leverage H&E images, SPEED 
extracted image features for each spot and incorporated them into 
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its low-dimensional embeddings, integrating epigenomic, spatial and 
image features (Methods). Using manual annotations as the ground 
truth, we found that SPEED effectively distinguished the pallium, sub-
pallium and thalamus regions, whereas other methods failed to accu-
rately identify the boundaries of these regions (Supplementary Fig. 8b, 
JI of 0.81/0.64/0.77 for SPEED versus JI of 0.18–0.48/0.44–0.50/0.07–
0.10 for other methods). Moreover, the SPEED-derived spatial domains 
exhibited the highest agreement with tissue structures (Fig. 4k, ARI/
NMI = 0.41/0.57 for SPEED versus 0.33–0.36/0.44–0.48 for other 
methods) and more effectively separated distinct regions (Fig. 4l, 
DBI/SW = 2.31/0.53 for SPEED versus 3.39–2.54/0.49–0.53 for other 
methods). These results highlight SPEED’s robust ability to integrate 

multimodal spatial information for precise epigenomic spatial domain 
identification across diverse SE datasets.

To further demonstrate SPEED’s utility beyond embryonic tis-
sues, we applied it to three biologically complex datasets: (1) the adult 
human hippocampus spatial ATAC-RNA-seq dataset from Zhang et al.8; 
(2) the P22 mouse brain dataset from the same study8; and (3) the 
spatial-Mux-seq dataset from the mouse model of neuroinflammation–
experimental autoimmune encephalomyelitis (EAE) by Guo et al.11. All 
three datasets reflect greater cellular heterogeneity and complexity 
compared with embryonic samples.

In the human hippocampus dataset, only SPEED and scOpen suc-
cessfully distinguished the anatomically annotated choroid plexus 
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Fig. 4 | Identifying epigenomic spatial domains of mouse embryos.  
a–e, Spatial distribution of known tissue and organ locations from the tissue 
image (a), clusters generated from combined ATAC and RNA information 
provided from original research (b), transcriptomic spatial domains identified 
by SPACEL (c), clusters generated using only raw spatial ATAC-seq data (d), and 
epigenomic spatial domains identified by SPEED (e). ST, spatial transcriptomic. 
f,g, NMI and ARI (f), as well as DBI and SW (g), comparing epigenomic spatial 
domains identified from raw and denoised data across six methods, using 
joint annotations as the ground truth. h,i, Same as f (h) and g (i), but using 

transcriptomic spatial domains as the ground truth. j, Spatial distribution of 
epigenomic spatial domains annotated with labels from the original study that 
reference Kaufman’s Atlas of Mouse Development and the Allen Brain Atlas (left) 
and identified by SPEED (right) in mouse embryo brain MISAR-seq data. DPallm, 
mantle zone of dorsal pallium; DPallv, ventricular zone of dorsal pallium. k,l, NMI 
and ARI (k), as well as DBI and SW (l), comparing the corresponding epigenomic 
spatial domains identified by raw measurement and denoised data from six 
methods with manual annotations.
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and granule cell layer, whereas other methods failed to resolve 
these structures or produced inaccurate, diffuse boundaries 
(Supplementary Fig. 10a). In the P22 mouse brain, using the Allen 
Brain Atlas33 annotations as the ground truth, SPEED was the only 
method that resolved four cortical layers, outperforming the 
original study and other tools that identified two to three layers 
(Supplementary Fig. 10b,c). In the EAE dataset, SPEED uniquely recov-
ered the lateral ventricle and preserved the cortical layering consist-
ent with the Allen Brain Atlas—structures not discernible in the raw 
data or with other denoising methods (Supplementary Fig. 10d,e). 
Together, these results provide strong evidence that SPEED generalizes 
effectively to adult and disease tissues and supports the discovery of 
biologically meaningful spatial architecture from complex SE datasets.

Enhancing signals in spatial CUT&Tag data
Spatial CUT&Tag technology enables the study of histone modifica-
tions at spatial resolution, yet remains challenged by high noise levels. 

Because SPEED does not rely on assumptions about spatial distribution, 
it can be effectively applied to denoise spatial CUT&Tag data.

To evaluate SPEED’s performance, we analyzed publicly available 
P22 mouse brain spatial-CUT&Tag-RNA data8, which simultaneously 
profile genome-wide histone modifications and gene expression. 
We focused on histone H3K4me3 and H3K27ac modifications, which 
are associated with active chromatin states. Notably, we did not use 
single-cell CUT&Tag data as a reference due to their higher sparsity 
compared with spatial data34,35 (Supplementary Fig. 11 and Methods).

For histone modifications associated with active chromatin, an 
effective denoising method should enhance the correlation between 
gene activity inferred from open chromatin regions and gene 
expression. We computed gene activity scores from both raw and 
SPEED-denoised data. Across tissue-specific marker genes (Cux2, Fezf2, 
Satb2 and Tspan2)8, SPEED-denoised data exhibited clearer spatial 
expression patterns corresponding to tissue regions, along with higher 
correlations with gene expression (Fig. 5a,b).
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Fig. 5 | Enhancing signals in spatial CUT&Tag data. a,b, Spatial distributions of 
region-specific marker genes. Spots are colored by denoised gene expression 
using MAGIC, gene scores computed from raw data, and gene scores computed 
from SPEED-denoised data for H3K4me3 (a) and H3K27ac (b) in mouse P22 

brains. c,d, PCC and cosine similarity between gene activity scores and denoised 
gene expression for each spot before (x axis) and after (y axis) SPEED denoising 
for H3K4me3 (c) and H3K27ac (d). Spots are colored according to sequencing 
depth of spatial transcriptomics data.
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To quantitatively assess SPEED’s impact, we computed the cor-
relation between gene activity scores and gene expression using the 
Pearson correlation coefficient (PCC) and cosine similarity (Meth-
ods). We found that SPEED denoising substantially enhanced the 
correlations between H3K4me3/H3K27ac modifications and gene 
expression (Fig. 5c,d and Supplementary Fig. 12). These results dem-
onstrate that SPEED is broadly applicable across different SE data 
types, providing a versatile framework for signal denoising across 
diverse SE datasets.

Ablation study of SPEED
To assess the contribution of individual components in SPEED’s model 
design, we conducted ablation studies using the E13 mouse embryo 
spatial ATAC-seq data from Zhang et al. and the mouse embryonic brain 
MISAR-seq data from Jiang et al. We compared the full SPEED model 
against three ablated variant models that lacked either the single-cell 
reference, spatial information or image features. We found that remov-
ing any of the three components resulted in reduced performance 
(Supplementary Fig. 13a,b). We evaluated multiple image feature extrac-
tion networks, including ResNet5036 and pathology-specific foundation 
models37,38, and observed only marginal differences in model perfor-
mance (Supplementary Fig. 14). By default, SPEED used ResNet50. While 
excluding image features had little impact on quantitative metrics, it 
impaired the accurate identification of spatial domains, particularly in 
regions with well-defined structural boundaries, as the dashed white 
boxes shown in Supplementary Fig. 13c. Furthermore, incorporating a 
single-cell reference substantially improved performance over using no 
reference, whereas supplementing with a large-scale atlas-level refer-
ence yielded only modest additional gains beyond the best-performing 
individual single-cell dataset (Supplementary Fig. 13a,b). These find-
ings confirm that each component of SPEED contributes to its robust 
performance in optimizing signal denoising and epigenomic spatial 
domain identification.

Furthermore, we evaluated the impact of different loss functions 
on model performance. Among models trained with cosine distance 
loss, binary cross-entropy loss and mean squared error loss, the model 
with cosine distance loss consistently yielded denoised TSCAS with 
higher FC and identified epigenomic spatial domains with superior 
ARI/NMI scores (Supplementary Fig. 15). In addition, to evaluate how 
reference batch effects and data heterogeneity impact the perfor-
mance of SPEED, we compared models using single-batch references 
versus whole-atlas datasets of comparable size. While SPEED exhibited 
robust performance across all settings, the full atlas consistently 
yielded the best results (Supplementary Fig. 16). Notably, increasing 
both the number and diversity of reference cells further enhanced 
its performance, indicating that broader biological heterogeneity 
in the reference improves the modeling of peak co-accessibility in 
SPEED. We also assessed model convergence by tracking training 
and validation losses, and observed consistent validation loss con-
vergence across all datasets, confirming stable and reliable training 
(Supplementary Fig. 17).

Discussion
Although SPEED is a promising and generalizable tool for improving 
data quality and biological insights in SE, it still has certain limita-
tions. Currently, SPEED does not support batch effect correction or 
cross-slice integration. Incorporating batch correction techniques in 
SPEED could help to extend its applicability to multislice SE datasets. 
In terms of model design, SPEED uses a multilayer perceptron network 
for dimensionality reduction within the DMF framework. In the future, 
incorporating more advanced dimensionality reduction models—such 
as graph neural networks or transformer-based methods—into the DMF 
framework to generate low-dimensional representations, along with 
mechanisms for automatically learning fusion weights across modali-
ties, may further enhance the performance of SPEED. Besides, SPEED 

is currently only pretrained on atlas-level single-cell chromatin acces-
sibility datasets of mouse embryo, adult mouse brain and human brain. 
Expanding the reference to include other tissues, single-cell CUT&Tag 
data and disease-state single-cell epigenomic datasets, or adopting 
hybrid strategies that integrate bulk and single-cell references when 
single-cell data are unavailable, would enhance SPEED’s applicability 
to broader SE data denoising tasks and the analysis of transcriptional 
regulatory mechanisms in disease contexts.

Although SPEED achieves improved accuracy in signal recovery 
by integrating spatial information, single-cell references and image 
features, this integration inevitably comes with increased computa-
tional cost. In resource-constrained settings, lighter-weight methods 
such as scOpen offers advantages in terms of computational efficiency. 
Nonetheless, this trade-off does not diminish the strengths of SPEED 
in terms of accuracy and its capacity for novel biological discoveries. 
Overall, SPEED provides a robust and versatile framework for SE data 
denoising, facilitating the accurate recovery of chromatin accessibility 
and histone modification signals across diverse SE datasets.

Methods
SPEED model
For a data matrix X = {xij}N×M ∈ N, where xij represents the value of cell 
or spot i and peak j in the matrix, N represents the number of cells or 
spots, and M represents the number of peaks, we assume that xij  
distributes as a Bernoulli binomial distribution, xij ∼ Bernoulli (pij) . 
SPEED draws on the DMF framework to model epigenomic data. DMF 
was initially proposed for recommender systems. Originally developed 
for recommender systems25, DMF uses two neural networks to learn 
low-dimensional representations of the row and column vectors and 
reconstructs a denser matrix via an inner product or similar combina-
tion26. This makes DMF naturally suited for denoising sparse epig-
enomic matrices. In our setting, rows correspond to cells or spots, and 
columns to peaks. SPEED learns low-dimensional embeddings for each 
through two fully connected networks. Their inner product yields the 
predicted probability matrix ̂X , representing the denoised data, with 
a Sigmoid activation39 ensuring non-negativity.

̂X = { ̂xij}N×M, xij ∼ Bernoulli ( ̂xij) , (1)

where ̂xij  represents the value of cell or spot i and peak j in the 
denoised matrix.

The fully connected neural network for extracting low-dimensional 
embeddings consists of three linear layers. Each output of the linear 
layer is followed by a LayerNorm layer, Dropout layer and LeakyReLU 
activation function to produce the final output. For single-cell data, 
the embeddings Escsignal and Psc for each cell and peak are derived by 
separately reducing the epigenomic profiles via two distinct fully con-
nected neural networks. The reconstruction matrix is given by

̂X = Sigmoid (Escsignal⋅P
sc + Escdepth) , (2)

where Escdepth is learned by the neural network shared with Escsignal, repre-
senting the sequencing depth for each cell.

For spatial data, the embedding Espspot for each spot is obtained by 
summing the outputs of three distinct fully connected neural networks, 
which separately process the epigenomic profile embedding Espsignal, 
spatial location embedding Esploc  and stained image embedding 
Espimg. Thus,

Espspot = E
sp
signal + E

sp
loc + E

sp
img. (3)

Each peak embedding Psp is derived through another fully con-
nected neural network applied to the epigenomic profile. Espsignal, Esploc 
and Espimg are fused with equal weights into Espspot, as the network learns 
to emphasize or de-emphasize each modality in a data-driven manner.
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The reconstruction matrix is

̂X = Sigmoid (Espspot⋅Psp + E
sp
depth) , (4)

where Espdepth is learned by the neural network shared with Espsignal, repre-
senting the sequencing depth for each spot.

The input to the network for extracting cell or spot embeddings 
is the signal vector {xi⋅} for each cell or spot i across all chromatin acces-
sible peaks and, for extracting peak embeddings, the network inputs 
the signal vector {x⋅j} for each peak j across all cells. For spatial omics 
data, H&E image data for each spot were segmented and passed 
through a ResNet50 (refs. 36,40) network (pretrained on the ImageNet 
dataset) to extract 2,048-dimensional image features. The image fea-
tures obtained by the ResNet50 network served as input to the stained 
image network in SPEED. In addition to the default ResNet50, we also 
provide options for UNI37 and Prov-Gigapath38 models, enabling users 
to flexibly select different backbones for H&E image feature extraction. 
The location network receives k-order relative locational encodings ŷi 
for each spot as input, where

ŷi = [ ̂di1, ̂di2,… , ̂diN] (5)

̂dij = {
1 + log ( dij

d
) , if dij

d
< k

0, else.
(6)

d is the average Euclidean distance between all adjacent spots. 
D = {dij}N×N ∈ R

+ represents the Euclidean distance matrix among all N 
spots, where dij represents the Euclidean distance between spot i and 
spot j.

Because the number of cells or spots N varies greatly across epig-
enomic datasets, we adapt the size of the multilayer perceptron accord-
ingly to maintain the number of neurons within a practical range of 102 
to 103. In typical spatial epigenomic datasets, N ranges from 103 to 105, 
while the number of peaks is usually on the order of 105, necessitating 
an adaptive strategy to ensure computational efficiency and stable 
training. Therefore, for the networks extracting peak and spatial loca-
tion embeddings, the numbers of neurons in the three layers are 

2.5 ×√
N+M
2

, √
N+M
2

 and 32, respectively. For the networks extracting 

cell or spot embeddings, the three layer sizes are 2.5 ×√
N+M
2

, √
N+M
2

 
and 33, where the first 32 dimensions of the output vector represent 
Escsignal or Espsignal, and the last dimension encodes the sequencing depth 

Escdepth or Espdepth. For the stained image embedding network, the three 
layer sizes are 512, 128 and 32. All modality-specific features—including 
epigenomic, spatial and image-derived representations—are ultimately 
embedded into a shared 32-dimensional latent space through the 
SPEED network, ensuring effective multimodal fusion.

Training processing
To address extreme sparsity in SE data, we use the cosine distance loss 
function to constrain model training, defined as

||X, ̂X||COS = 1 −
1
2 cosine (X,

̂X) − 1
2 cosine (X

T, ̂X
T
) , (7)

where

cosine (X, ̂X) = 1
N

N
∑
i=1
cosine (xi⋅, x̂i⋅) (8)

cosine (XT, ̂X
T
) = 1

M

M
∑
j=1
cosine (x⋅j, x̂⋅j) . (9)

For single-cell data, the loss function is the cosine distance 
between the raw matrix and the reconstruction matrix:

loss = ||X, ̂X||COS. (10)

The model constrains the similarity between the original input 
matrix X and the reconstructed matrix ̂X  from the DMF decomposition 
through the loss function shown in equation (10) to ensure that the 
DMF decomposition computed by the neural networks is accurate.

For spatial data, SPEED enforces additional constraints to align 
peak embeddings with single-cell references and regulate the contribu-
tions of image features. Therefore, the loss function is

loss = ||X, ̂X||COS + α||Psc − Psp||
2 + β/||Espimg||

2
, (11)

where α controls the strength of alignment to single-cell embeddings, 
and β regulates the contributions of image features. As described 
above, the model constrains the similarity between the original input 
matrix X and the reconstructed matrix ̂X  from the DMF decomposition 
through the loss function shown in equation (11) to ensure that the DMF 
decomposition computed by the neural networks is accurate.

For spatial datasets lacking high-resolution histological images, 
we set β = 0 during training spatial data. The loss function is as follows:

loss = ||X, ̂X||COS + α||Psc − Psp||
2. (12)

For spatial datasets lacking matched high-quality single-cell refer-
ences, we skip the first stage of training on the single-cell dataset and 
set α = 0 during training spatial data. The loss function is as follows:

loss = ||X, ̂X||COS + β/||E
sp
img||

2
. (13)

For spatial datasets lacking both single-cell reference and 
high-resolution images, we set both α = 0 and β = 0 during training 
spatial data. The loss function is as follows:

loss = ||X, ̂X||COS. (14)

During training, batches of cells or spots and peaks are sampled 
separately. Each training epoch iterates through all the cell or spot 
batches and all the peak batches. The batch size for cells and spots is 

2int(log2
N
10
), and the batch size for peaks is 2int(log2

M
10
). The model parame-

ters are optimized using the Adam optimizer41 with a learning rate of 
0.00001 and weight decay of 0.001. A random subset of 1/6 of the cells 
or spots and peaks is used as the validation set, with the remaining as 
the training set. Training continues for up to 500 epochs, with early 
stopping if the validation loss does not decrease over 30 
consecutive epochs.

Binarization method
The reconstruction matrix ̂X  follows a Bernoulli binomial distribution, 
so we can calculate the expected proportion of positive signals for each 
spot and each peak:

qi =
1
ME [∑j

xij] =
1
M ∑

j
̂xij (15)

q j =
1
NE [∑i

xij] =
1
N ∑

i
̂xij. (16)

Subsequently, the binarization thresholds for each spot and peak, 
bi and bj, are calculated as

bi = the qith quantile of {xi⋅} (17)

b j = the q jth quantile of {x⋅j}. (18)

Finally, a binarized matrix XB is computed from the reconstruction 
matrix ̂X  as
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XB = {xBij}N×N (19)

xBij = {
1, if ̂xij >

bi+b j

2

0, else.
(20)

Simulation data construction
We sampled scATAC-seq data from Jiang et al.’s E13.5 mouse embryo 
dataset15 and synthesized multiple single-cell profiles to generate 
pseudo-spots. We predefined 400 spots distributed in a 20 × 20 grid. 
These spots were arranged according to one of four predefined spatial 
distribution patterns, including stripe-like, block-like, circular-like and 
dispersed. Each distribution pattern contained four independent 
spatial regions as ground truth labels, with spots synthesized from 
scATAC-seq data of different tissue origins. For each spot, the number 
of cells was simulated using a Gaussian distribution N (10, 5). The spatial 
region of each spot served as the ground truth for clustering 
accuracy assessment.

To avoid the introduction of noise from single-cell data, we filtered 
the signal for each spot based on half of its cell count, setting values 
below the threshold to zero. The resulting filtered matrix was used as 
the ground truth for the simulated data to evaluate denoising accuracy. 
To simulate the sparsity of real spatial ATAC-seq data, random drop-
outs were introduced into the ground truth matrix by setting certain 
elements to zero with a defined probability. The dropout probability 
dpi for each spot i was generated based on its cell count, calculated as

dpi = 1 − ni × 0.01, (21)

where ni is the cell count of spot i.
When using SPEED to denoise the simulated data, we used 

only the portion of the mouse embryo sc/snATAC-seq atlas data 
that does not overlap with the datasets used for simulation as the 
single-cell reference.

Preprocessing of single-cell and spatial omics data
The raw fastq files of the sc/snATAC-seq data were processed using 
CellRanger ATAC (v.2.0.0) with the default parameters and aligned 
to the mm10 reference genome. Peaks were called by MACS242 using 
the ‘addReproduciblePeakSet’ function in ArchR43 after merging all 
single-cell datasets.

For the spatial ATAC-seq data, we used the fragment files pro-
vided by the original study, aligned to the mm10 reference genome. 
We performed denoising and downstream analysis using the peak 
matrix generated by ArchR, which shared the same peak set with the 
single-cell reference data.

For the bulk ATAC-seq data, we obtained fragment files and the 
merged peak set for 16 samples of E13.5 mouse forebrain, midbrain, 
hindbrain, embryonic facial prominence, limb, liver, heart and neural 
tube tissues from ENCODE. We then converted the fragments into a 
samples-by-peaks count matrix.

For the spatial CUT&Tag data, we used the fragment files from 
the original study, aligned to the mm10 reference genome. We con-
structed a 500-bp-tiled matrix generated by ArchR for denoising and 
downstream analysis.

Differential analysis
Differential analysis was performed on the E13.5 mouse embryo 
scATAC-seq data by grouping cells according to their tissue of ori-
gin to identify single cell TSCAS. We normalized the data using the 
‘RunTFIDF’ function in Signac44, followed by using the ‘FindMarkers’ 
function with ‘test.use = ‘wilcox’’ to identify marker peaks for each tis-
sue. Marker peaks were filtered on the basis of log2FC >1 and adjusted 
P value <0.01.

Differential analysis was performed on the E13.5 mouse embryo 
bulk ATAC-seq data based on the tissue origin to identify bulk TSCAS. 
We used DESeq245 to conduct this analysis, selecting marker peaks with 
log2FC >1 and adjusted P value <0.01.

For spatial data differential analysis, groups were defined on the 
basis of joint annotations from the original study, derived from the 
joint clustering of ATAC and RNA data. To evaluate the similarity of the 
differential analysis results between the spatial ATAC-seq data and the 
ground truth (single-cell or bulk data), we applied the both correspond-
ing differential analysis workflows to the spatial data and compared the 
resulting marker peaks with the respective TSCAS sets. Marker peaks 
were filtered using log2FC >0.8 and adjusted P value <0.01.

Identification of epigenomic spatial domains
For each denoising method, we obtained spot embeddings and iden-
tified epigenomic spatial domains by applying the Leiden clustering 
algorithm using the ‘scanpy.pp.neighbors’ and ‘scanpy.tl.leiden’ func-
tions in Scanpy46, with ‘random_state=1’ to ensure reproducibility. For 
the raw (undenoised) data, we first performed latent semantic indexing 
for dimensionality reduction using the ‘addIterativeLSI’ function in 
ArchR to generate spot embeddings from fragment files. Subsequently, 
we applied the ‘addClusters’ function in ArchR with default parameters 
to identify epigenomic spatial domains. In addition, for the simulated 
data before denoising, we used the ‘muon.atac.pp.tfidf’ and ‘muon.
atac.tl.lsi’ functions in the muon package47 to derive spot embeddings 
based on the peak matrix.

Identification of transcriptomic spatial domains
For the E13 mouse embryo spatial-ATAC-RNA-seq data, we used 
SPACEL32 to identify transcriptomic spatial domains as the ground truth 
for the epigenomic spatial domains. The E13 mouse embryo scRNA-seq 
data from Cao et al.48 served as the single-cell reference for SPACEL. 
Specifically, we used the ‘SPACEL.Spoint’ function for deconvolution 
and the ‘SPACEL.Splane’ function to identify transcriptomic spatial 
domains, with parameters n_neighbors = 4 and k = 1.

Evaluation of denoised spatial ATAC-seq data
AUROC. AUROC is commonly used to evaluate the accuracy of pre-
dictions in binary classification tasks. Here, we used it to assess 
the accuracy of chromatin accessibility predictions by different 
denoising methods in simulated data. An AUROC score of 1 indi-
cates perfect prediction accuracy, while a score of 0.5 represents 
random predictions.

Enhancer and promoter signal intensity. We obtained the chro-
matin states of the E13.5 mouse embryonic forebrain and hind-
brain from ENCODE. Then, we annotated the E13 mouse embryo 
spatial-ATAC-RNA-seq data to the corresponding regions (FB1, FB2 
and FB-VZ for forebrain and HB1, HB2 and HB-VZ for hindbrain) and 
mapped the peaks into five chromatin states (promoter, enhancer, 
transcription, heterochromatin and others). We scaled the denoised 
values of each peak to a range of 0–1 based on their 99th and 1st per-
centiles across different methods, ensuring comparability. Next, we 
computed the mean signal values of enhancers or promoters in the 
forebrain and hindbrain. A higher ratio of the mean signal at enhancers 
or promoters relative to other chromatin states indicates more specific 
enhancement of signals at cis-regulatory element sites.

FC. We calculated the FC of TSCAS signals in specific tissues com-
pared with other tissues in the ATAC modality of E13 mouse embryo 
spatial-ATAC-RNA-seq data. Tissue annotations were derived from the 
joint annotations provided by the original study. Specifically, Face and 
Limb were annotated as Limb; FB1, FB2, FB-VZ, HB1, HB2 and HB-VZ 
were annotated as Brain; and Eye and Body5 were annotated as Eye. 
For tissue t, the FC for each marker mt is calculated as

http://www.nature.com/natcomputsci


Nature Computational Science

Article https://doi.org/10.1038/s43588-025-00941-3

Fold change (mt) =
max
T

(∑i∈{STI }
̂ximt /nT)

max
TO

(∑i∈{SOI }
̂ximt /nTO)

, (22)

where ̂X = { ̂xij}N×M  represents the denoised matrix. For tissue t, T rep-
resents each of the joint annotations corresponding to t, with the set 
of included spots denoted as STI , I = 1, 2,… ,nT ; and TO represents each 
of the other joint annotations, with the set of included spots denoted 
as SOI , I = 1, 2,… ,nTO. Higher FC values indicate greater tissue specificity 
of TSCAS.

Moran’s I. We calculated Moran’s I to assess the spatial autocorrelation 
of denoised TSCAS signals in the ATAC modality of E13 mouse embryo 
spatial-ATAC-RNA-seq data. For each spot, we identified its four nearest 
neighbors within the same joint annotation from the original study. 
Then, we computed Moran’s I for each peak using ‘scanpy.metrics.
morans_i’. Higher Moran’s I indicates higher spatial autocorrelation.

Evaluation of spatial ATAC-seq data differential analysis 
results
JI. We used the JI to calculate the similarity between the differential 
accessible peaks obtained from different denoising methods and the 
TSCAS. For each joint annotation a from the original study, the set of 
differential accessible peaks are denoted as P̃a, and for each tissue t in 
single-cell or bulk data, the TSCAS is denoted as Pt. The JI between them 
is defined as

JI (a, t) = |P̃a ∩ Pt|
|P̃a ∪ Pt|

. (23)

When comparing different methods, we calculate the average of 
the maximum JI values for each tissue as the overall JI for each method:

JI = 1
T∑t

maxa (JI (a, t)) , (24)

where T is the number of tissues. A higher JI indicates a greater similar-
ity between the differentially accessible peaks and TSCAS. Notably, 
because scOpen denoises normalized peak matrices rather than raw 
peak matrices, it is not suitable for differential analysis using the same 
workflow as applied to raw single-cell and bulk data, and therefore 
cannot be evaluated using JI.

Evaluation of spatial ATAC-seq dimensionality reduction 
results
We evaluated the separation of ground truth labels in the low- 
dimensional latent space generated by different methods using the 
DBI and SW.

DBI. Let K denote the number of ground truth labels. si represents the 
average distance from all points in the ith cluster to its center in the 
low-dimensional latent space, and dij represents the distance between 
the centers of the ith and jth clusters. The DBI is then defined as

DBI = 1
K

K
∑
i=1
max
j≠i

Rij, (25)

where:

Rij =
si + s j
dij

. (26)

A lower DBI indicates a greater separation of the ground truth 
labels in the low-dimensional latent space.

SW. Let K denote the number of ground truth labels. d (k, l) represents 
the distance between spot k and l in the latent space. For each spot 
k ∈ CK, let

a (k) = 1
|CK| − 1

∑
l∈CK ,l≠k

d (k, l) (27)

b (k) = min
L≠K

1
|CL|

∑
l∈CL

d (k, l) , (28)

where |CK| is the number of spots belonging to cluster CK . The SW is 
computed as

Silhouette =
K
∑
k=1

b (k) − a (k)
max [a (k) ,b (k)]

. (29)

The score is then scaled between 0 and 1, following the approach 
used in scib49. A higher SW indicates a greater separation of the ground 
truth labels in the low-dimensional latent space.

Evaluation of epigenomic spatial domain identification
Ground truth annotations used for evaluation. For the E13 mouse 
embryo spatial ATAC-RNA-seq data, we defined two ground truth ref-
erences: (1) clusters generated by joint clustering of spatial ATAC-RNA 
data from Zhang et al. and (2) spatial domains inferred from spatial 
transcriptomics data using SPACEL. According to the anatomical anno-
tations from the original study, we mapped these clusters and spatial 
domains to forebrain, hindbrain, eye, limb, facial and body, and so on.

For the mouse embryo MISAR-seq data, we used the manual 
annotations of each tissue (from the original study, referencing Kauf-
man’s Atlas of Mouse Development50 and the Allen Brain Atlas33) as 
the ground truth.

We used the NMI and ARI to evaluate the concordance between the 
epigenomic spatial domains identified by different methods and the 
ground truth labels. The number of domains generated by each method 
was consistent with the number of ground truth labels.

NMI. For ground truth labels T and epigenomic spatial domains A:

NMI (T,A) = 2 × I (T,A)
H (T) + H (A) , (30)

where I(., .) represents mutual information and H(.) represents entropy. 
A larger NMI indicates better alignment between the clustering and 
the ground truth labels.

ARI. The ARI is calculated as

ARI = RI − E (RI)
max (RI) − E (RI) , (31)

where

RI = tp + tn
( N
2
)

. (32)

tp represents the number of true positives, and tn represents 
the number of true negatives. A higher ARI indicates a better match 
between the epigenomic spatial domains and the ground truth labels.

Evaluation of spatial CUT&Tag-RNA data denoising results
We assessed the accuracy of denoising results by calculating the simi-
larity between gene activity scores obtained from denoised spatial 
CUT&Tag data and gene expression. Gene expression data are denoised 
using MAGIC51. Specifically, we processed the raw fragment files and 
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the binarized denoised outputs from SPEED using ArchR to obtain gene 
activity scores for the raw and data denoised by SPEED. Subsequently, 
we assessed the correlation between gene activity scores and gene 
expression at each spot using the PCC and cosine similarity.

PCC (X,Y) = cov (X,Y)
σXσY

(33)

Cosine (X,Y) = X⋅Y
||X|| ⋅ ||Y|| . (34)

Hyperparameter settings for benchmarking methods
The selection of hyperparameters for each method followed the official 
tutorials and codes provided by the respective authors: spaPeakVAE52, 
scBasset53, pycisTopic54, scOpen55 and SCALE56.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All SE, single-cell RNA-seq and scATAC-seq datasets used in this study 
can be downloaded from public websites or databases: E11.5, E12.5 and 
E13.5 mouse embryo scATAC-seq data from 16 tissues at https://ngdc.
cncb.ac.cn/gsa/browse/CRA003910 (ref. 15). E12.5, E13.5 and E14.5 
embryonic mouse cerebellum snATAC-seq data are available in the GEO 
database under accession GSE178546 (ref. 28). E17.5 embryonic mouse 
heart scATAC-seq data are available in the GEO database under accession 
GSE190977 (ref. 27). E12.5, E13.5 and E15.5 mouse embryo snATAC-seq 
data are available in the GEO database under accession GSE214991 
(ref. 12). Three samples of E18 mouse embryo brain snATAC-seq data  
are available at https://www.10xgenomics.com/datasets (ref. 16). 
Mouse embryo scRNA-seq data are available in the GEO database 
under accession GSE119945 (ref. 48). Human brain scATAC-seq data 
are available in the GEO database under accession GSE147672 (ref. 57).  
Adult mouse brain scATAC-seq data are available in the GEO data-
base under accession GSE246791 (ref. 22). E13 mouse embryo spatial- 
ATAC-RNA-seq data are available in the GEO database under accession 
GSE205055 (ref. 8). E11–E18.5 mouse embryo MISAR-seq data are available 
at https://www.biosino.org/node/project/detail/OEP003285 (ref. 13).  
P22 mouse brain Spatial-CUT&Tag-RNA-seq data are available in the 
GEO database under accession GSE205055 (ref. 8). Human hippocam-
pus spatial-ATAC-RNA-seq data are available in the GEO database under 
accession GSE205055 (ref. 8). P22 mouse brain spatial-ATAC-RNA-seq 
data are available in the GEO database under accession GSE205055 
(ref. 8). EAE mouse brain spatial-Mux-seq data are available in the GEO 
database under accession GSE263333 (ref. 11). E13.5 mouse embryonic 
forebrain, hindbrain, midbrain and limb bulk ATAC-seq data from 
ENCODE are available at https://www.encodeproject.org (ref. 29). 
Chromatin state annotations for the E13.5 mouse embryonic fore-
brain and hindbrain are available at https://genome.ucsc.edu/cgi-bin/
hgTrackUi?hgsid=2471038369_O34GqlYujAEy04rHeqMnjX560AHY
&g=encode3RenChromHmm (refs. 30,31). Source data are provided 
with this paper.

Code availability
The open-source package of SPEED is available via GitHub at https://
github.com/QuKunLab/SPEED. All codes and scripts used for the analy-
ses and figure plotting in this study are available via Zenodo at https://
doi.org/10.5281/zenodo.14948507 (ref. 58).
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