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Spatial epigenomics (SE) technologies profile epigenomic landscapes within
intact tissues, preserving spatial context and enabling the study of gene

regulatory mechanisms in situ. However, current SE datasets typically suffer
from low signal detection, substantial noise and extremely sparse peak
matrices, which pose considerable challenges for downstream analysis.
Here we introduce SPEED (spatial epigenomic data denoising), adeep matrix
factorization framework that leverages atlas-level single-cell epigenomic
data and spatial context to impute and denoise SE data. In comprehensive
benchmarks on both simulated data and real SE tissue datasets, SPEED
outperformed five state-of-the-art methods across diverse tissues and
technologies. Moreover, SPEED’s denoised outputs facilitated downstream
analyses such as differential chromatin accessibility analysis, epigenomic
spatial domainidentification and gene activity inference. Collectively, our
resultsindicate that SPEED is a generalizable tool for improving data quality
and biologicalinsightsin SE.

Cellular function within tissues is tightly linked to the spatial organiza-
tion of cells'. Recent advances in spatial omics technologies enable
the simultaneous profiling of epigenomic, transcriptomic or prot-
eomic landscapes while preserving spatial context, facilitating the con-
struction of spatially resolved single or multi-omics maps*™. Among
these, spatial epigenomics (SE) technologies, including spatial ATAC?,
spatial-ATAC-seq’, epigenomic MERFISH’, spatial-ATAC-RNA-seq®,
MISAR-seq”, spatial-CUT&Tag", spatial-CUT&Tag-RNA-seq®, Slide-tags™
and spatial-Mux-seq", enable genome-wide epigenomic profiling at
spatial resolution. These technologies have been widely applied to
mouse embryonic* """ and brain tissues*’"*", as well as to disease
models'* > and human samples®’, providing insights into tran-
scriptional regulatory mechanisms within tissues. However, SE tech-
nologies remain challenged by lower signal detection, increased

noise and much sparser peak matrices compared with single-cell
epigenome sequencing.

Forexample, the current spatial assays for transposase-accessible
chromatin using sequencing (ATAC-seq) methods (including spatial
ATAC?, spatial-ATAC-seq’ and spatial-ATAC-RNA-seq®) generate SE
data in which the transcription start site enrichment score and the
fraction of reads in peaks are lower than those obtained fromsingle-cell
epigenome sequencing of the same tissue'*"' (Supplementary Fig. 1).
This limitation persists despite the relatively large spot diameters
(20-50 um), which typically encompass multiple cells. These issues
hinder downstream analyses and limit the applicability of SE technolo-
gies to complex biological contexts, such as disease tissues.

Several computational approaches have been developed to extract
meaningful biological insights from noisy and sparse epigenomic
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Fig.1| Workflow of SPEED. SPEED uses DMF to independently decompose the
peak matrices from single-cell and spatial epigenomic data, while imposing a
constraint on the similarity between spatial peak embeddings and single-cell
peak embeddings to facilitate transfer learning. Spot embeddings are formed by
aggregating epigenomic signal embeddings, spatial location embeddings and
image embeddings, which are extracted through three distinct neural networks.
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P*and PP respectively denote the peak embeddings for single-cell and spatial
data, and E?r‘;g represents theimage embedding. The parameter a controls the
strength of alignment to single-cell embeddings, and S regulates the
contributions of image features in the loss function. MSE, mean squared error;
emb., embedding.

data (Supplementary Fig. 2). For instance, scBasset utilizes deep con-
volutional neural networks to predict chromatin accessibility from
DNA sequence features”; SCALE integrates a variational autoencoder
with a Gaussian mixture model to extract latent representations from
single-cell ATAC-seq (scATAC-seq) data'®; scOpen uses non-negative
matrix factorization for scATAC-seq imputation”; and cisTopic applies
latent Dirichlet allocation to infer topic distributions of cells and
genomic regions in scATAC-seq data®’. However, these methods do
not explicitly incorporate spatial information, making them subopti-
mal for SE data analysis.

spaPeakVAE is a spatially informed method that uses a deep gen-
erative spatial variational autoencoder to model spatial ATAC-seq data
while capturing spatial correlations between spots”. However, it relies
on Gaussian process priors to model spatial information, requiring
predefined kernel functions to represent correlations across different
spatial locations. Furthermore, all these methods use unsupervised
learning, whichis inherently constrained by the extreme sparsity and
noise of SE data.

Concurrently, large-scale single-cell epigenomic atlases have
become available, providing comprehensive chromatin accessibility
profiles across various tissues, including the mouse embryo”, mouse
brain?, human brain** and human primary tissues*. These high-quality
single-cell epigenomic datasets offer valuable prior information for
modeling SE data, enabling more accurate analyses. To fully leverage
this prior information, a computational framework is required that
canbothdenoise SE dataand effectively integrate external references.
Although originally developed for recommender systems, deep matrix
factorization (DMF) captures complex dependencies and recovers
meaningful signals from highly sparse and noisy data®?, providing a
flexible and powerful solution for omics denoising. By incorporating
atlas-level single-cell epigenomic datainto the DMF framework, peak
representationsin SE data can be constrained to align with high-quality
single-cell priors, thereby improving signal recovery and enhancing
downstream analyses.

Here, we propose SPEED (spatial epigenomic data denoising),
a DMF framework that leverages atlas-level single-cell data and spa-
tial information for SE data imputation and analysis. Unlike existing
approaches, SPEED automatically learns the inherent relationships

between peaks from large-scale single-cell epigenomic reference data
and transfers this knowledge to the spatial data, effectively mitigating
extreme sparsity and noise in SE datasets. In addition, SPEED encodes
the spatial arrangement of spots and can incorporate histological
image features, enablingit to preserve spatially coherent patternsinthe
data. Consequently, SPEED achieves better performance in denoising
and dimensionality reduction compared with unsupervised methods.

To assess its performance, we systematically evaluated SPEED
against five state-of-the-art methods using arange of datasets, includ-
ing 4 simulated datasets and 14 real tissue sections obtained with
spatial ATAC-seq and spatial cleavage under targets and tagmentation
(CUT&Tag) technologies. Our results demonstrate that SPEED more
accurately imputes spatial chromatin accessibility and histone modi-
fication signals while outperforming existing methods in denoising,
dimensionality reduction, differential chromatin accessibility analysis
and epigenomic spatial domainidentification. Collectively, these find-
ingsindicate that SPEED is a promising tool for SE data denoising and
downstream analysis across multiple SE modalities.

Results

Overview of SPEED

SPEED utilizes atlas-level single-cell epigenomic data as prior knowl-
edge to perform SE data denoising and downstream analysis through
atwo-step framework. First, SPEED applies DMF to decompose the
raw peaks-by-cells matrix from single-cell epigenomic data into two
low-dimensional embeddings representing peak and cell features
(Fig. 1and Methods). The reconstructed matrix is obtained by com-
puting the product of these embeddings, with a cosine distance loss
function minimizing the distance between the reconstructed and
raw matrices to improve signal retention. Next, SPEED applies DMF
to the peaks-by-spots matrix from SE data, generating peak and spot
embeddings. To transfer learned peak-to-peak relationships from
large-scale single-cell data, SPEED constrains the similarity between
spatial peak embeddings and single-cell peak embeddings. In parallel,
spot embeddings aggregate epigenomic signal embeddings, spatial
locationembeddings and image embeddings, extracted via three dis-
tinct neural networks. The spatial location embeddings are trained
using relative spot coordinates, while the optionalimage embeddings
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capture additional structural information from high-quality stained
images. The loss function consists of three components: the cosine
distance loss between the reconstructed and raw matrices, the mean
squared error between the peak embeddings of spatial and single-cell
dataweighted by a, and the L2 regularization constraint on the image
embeddings weighted by B. After training, the final product of the spot
and peakembeddings represents the denoised SE signal matrix, where
spot embeddings integrate epigenomic, spatial and image features.
SPEED distinguishes itself from existing SE data analysis meth-
ods in several key aspects: (1) it leverages atlas-level single-cell epig-
enomic dataas areference toinfer peak-to-peak relationships as prior
knowledge; (2) it uses cosine distance loss for matrix factorization,
enhancing the signal-to-noise ratio ofimputed SE data; (3) it adaptively
integrates spatial and image features to refine low-dimensional spot
embeddings, particularly in structurally similar tissue regions. The
learned low-dimensional embeddings capture epigenomic, spatial
andimage features, enabling robust downstream analyses such as dif-
ferential chromatin accessibility analysis, epigenomic spatial domain
identification and gene activity inference. In addition, SPEED provides
apretrained model for mouse embryo data, leveraging an atlas refer-
ence of 312,248 scATAC-seq profiles spanning seven developmental
stages'>>1¢??8 (Supplementary Data 1). This eliminates the need for
de novo training, making SPEED an efficient tool for SE data analysis.
Furthermore, its user-friendly design allows researchers to leverage
publicly available or self-generated single-cell epigenomic datasets
to train models for various tissue types beyond the mouse embryo.

Denoising epigenomic data in simulated datasets
To assess SPEED’s denoising performance, we generated simulated SE
datasets using scATAC-seq data from16 tissue types”. Cells were aggre-
gated into simulated spots, providing genome-wide chromatin acces-
sibility profiles as the ground truth. We further assigned cells from four
randomly picked tissue types to spots in distinct spatial distribution
patterns—stripe-like, block-like, circular-like and dispersed—to evalu-
ate SPEED’s ability to identify epigenomic spatial domains. To mimic
SE data sparsity, we introduced dropouts with an average probability
of 90%, generating raw signal matrices for model input (Methods).
Using an independent scATAC-seq dataset as a reference, we
applied SPEED to denoise the simulated data (Fig. 2a,b). We applied a
commonly used metric, namely the area under the receiver operating
characteristic curve (AUROC) to evaluate the accuracy of binary clas-
sification models after denoising. A higher AUROC indicates higher
similarity between theimputed chromatin accessibility and the ground
truthinthe simulated data, and thereby better denoising performance
(Methods). We found that SPEED outperformed five existing spatial/
single-cell ATAC-seq denoising methods (Fig. 2a), achieving higher simi-
larity to the ground truth (Fig. 2c, AUROC per spot/peak = 0.86/0.82)
than other methods (AUROC per spot/peak = 0.77-0.86/0.38-0.77).
We then used the adjusted Rand index (ARI) and normalized
mutualinformation (NMI) to assess the similarity between the denoised
spatial distribution of spots and the ground truth in simulated data.
Higher ARland NMI valuesindicate better spatial domainidentification
by denoising approaches applied to the dropout dataset (Methods). We
found that SPEED was the only method capable of recovering the spatial
distribution of dispersed spots (Fig. 2b), and its predicted epigenomic
spatial domains matched the ground truth more closely than those of
other methods (Fig. 2d, ARI/NMI = 0.98/0.97 versus 0.15-0.90/0.20-
0.90 for other methods). Finally, we used the Davies-Bouldin index
(DBI) and silhouette width (SW) metrics to evaluate the compactness
of spots within the same ground truth cluster and the separation of
spots between different clusters in the low-dimensional embedding
space. Lower DBl and higher SWindicate a clearer distinction of spot
clustersinthe denoised embeddings and thereby abetteridentification
of spatial domains (Methods). We found that SPEED-derived embed-
dings provided better separation of ground truth regions compared

with other approaches (Fig. 2e, DBI/SW = 0.93/0.85 for SPEED versus
DBI/SW =4.94-1.07/0.51-0.81for other methods). These results dem-
onstrate SPEED’s effectiveness in SE data denoising and epigenomic
spatial domain identification.

Recovering tissue-specific chromatin accessibility signals

To evaluate SPEED’s performance on real SE data, we applied it to the
ATAC modality of the E13 mouse embryo spatial-ATAC-RNA-seq dataset
from Zhang et al., a dataset with well-characterized tissue spatial dis-
tributions®. As a reference, we compiled single-cell or single-nucleus
ATAC-seq data from five publicly available datasets, encompassing
312,248 cells across seven developmental stages (embryonic day
(E)11.5-E18)'2%5162728 (Supplementary Data1). Tissue-specific chromatin
accessible sites (TSCAS) were identified through differential acces-
sibility analysis of single-cell or bulk ATAC-seq data from embryonic
mouse tissues™”’. TSCAS were then defined as the ground truth for
evaluating denoising performance in spatial ATAC-seq data, comprising
53,876 TSCAS identified from E13.5 mouse embryo scATAC-seq dataand
162,482 TSCAS from bulk ATAC-seq data of the same developmental
stage (Supplementary Fig. 3 and Supplementary Data 2). We used fold
change (FC) and Moran’s/to assess the specificity and spatial autocor-
relation of all the TSCAS (Methods).

In the raw spatial ATAC-seq data, chromatin accessibility signals
at TSCAS appeared diffusely distributed, lacking spatial specific-
ity (Fig. 3a). After applying SPEED, these signals became distinctly
localized and continuous in expected tissue regions (Fig. 3a,b and
Supplementary Figs. 4 and5), as reflected by a higher FC of 2.42 versus
1.73 and an increase in Moran’s / from 0.02 to 0.84. Compared with
other methods, SPEED achieved the highest specificity and spatial
autocorrelation of ATAC signals at TSCAS (Fig. 3b, FC of 2.42 for SPEED
versus 0.51-1.80 for other methods, Moran’s /= 0.84 versus 0.61-0.81
for other methods), indicating its ability to effectively remove noise
while preserving biologically relevant spatial patterns.

To systematically assess SPEED’s ability to identify TSCAS, we
used E13.5 mouse embryo scATAC-seq and bulk ATAC-seq data (from
ENCODE?) as the ground truth and computed the Jaccard index (JI) to
measure the overlap between differentially accessible chromatin sites
identified by different methods and the ground truth datasets (Meth-
ods). SPEED exhibited higher similarity to the ground truth (Fig. 3c,
Jlof bulk/single-cell data, 0.14/0.11) compared with other methods
(Supplementary Fig. 6, ]I of bulk/single-cell data, 0.06-0.11/0.03-
0.06). These results demonstrate that SPEED improves the accuracy
of TSCAS identification in spatial ATAC-seq data.

We further investigated whether SPEED preferentially enhances
signalsatcis-regulatory elements compared with other chromatin sites.
Using chromatin state annotations from the ENCODE database®** for
the E13.5 mouse embryonic forebrain and hindbrain, we categorized
all peaks into five major groups: promoter, enhancer, transcription,
heterochromatin and others. We then calculated the signal inten-
sity ratios of enhancer and promoter regions relative to other chro-
matin states before and after denoising (Methods). SPEED-denoised
data exhibited the highest signal intensity ratios for promoters and
enhancers compared with both raw data and other denoising meth-
ods (Fig. 3d, for enhancers, 2.36 for SPEED versus 1.90-2.24 for other
methods; for promoters, 4.72 for SPEED versus 3.55-4.43 for other
methods). This indicates that SPEED effectively enhances signals at
cis-regulatory elements.

Identifying epigenomic spatial domains

Identifying epigenomic spatial domainsis a critical step in spatial omics
data analysis. We used the E13 mouse embryo system as an example,
where tissue domain distributions were well characterized by tissue
images, including the eye, forebrain, hindbrain, ventricles, limbs and
spine, providing aground truth reference for evaluating spatial domain
identification (Fig. 4a). To quantitatively assess the performance of all
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Fig. 2| Performance on the simulated dataset. a, Spatial distributions of
forelimb TSCAS signal obtained from ground truth data, dropout data and
denoised data from six methods. b, Spatial distributions of epigenomic spatial
domains identified by ground truth data, dropout data and denoised data from

six methods. ¢, Average AUROC per peak and per spot across six epigenomic
denoising methods on simulated datasets. d, Average ARl and NMI for dropout
dataand denoised data across six methods. e, Same as d, but showing the average
DBl and SW. Whiskers, standard errors; n = 4 samplesinc-e.
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Fig. 3| Denoising performance on mouse embryo. a, Spatial distributions of
TSCAS signals for raw measurements and six denoising methods. b, Average
Moran’s/and FC comparing TSCAS signals in corresponding tissues with other
regions across raw measurements and six methods. Whiskers, 0.5x standard
errors; n =41,213/67,250 peaks. ¢, The Jl comparing differentially accessible peaks
from raw and denoised data with TSCAS identified from scATAC-seq and bulk

ATAC-seq.d, The ratio of signal intensities in enhancers and promoters relative
to other chromatin states for raw measurements and denoised data from six
methods. Each dot represents amethod or raw measurement; blue and red dots
or lines indicate promoter and enhancer signals, respectively. The left and right y
axes represent promoter and enhancer signal ratios, respectively.

methodsinepigenomic spatial domainidentification, we also defined
two additional ground truth references: (1) spatial domains annotated
by joint RNA-ATAC clustering from Zhang et al.® (Fig. 4b) and (2) spatial
domains inferred from spatial transcriptomics data using SPACEL*
(Fig. 4c).

Because the raw spatial ATAC-seq data from the E13 mouse embryo
spatial-ATAC-RNA-seq dataset are highly noisy and sparse, cluster-
ing based on raw data failed to capture the known tissue structures
(Fig. 4d). However, when we applied SPEED to the same dataset and
clustered the low-dimensional embeddings of spots using the Leiden
algorithm, we observed that SPEED successfully identified all tissue
regions distinctly (Fig. 4e and Methods), closely aligning with known
structures observed in tissue images, as well as the joint RNA-ATAC
annotations from Zhang et al. and the spatial domain annotations by
SPACEL. These resultsindicate that the low-dimensional embeddings
generated by SPEED, which integrate epigenomic profiles and spatial
information, enable precise spatial domain identification.

Whenwe applied all the denoising approaches to the same dataset,
we found that only SPEED can successfully recover all tissue structures,
particularly in resolving the hindbrain subregion HB2 (J1 of 0.64/0.37
for SPEED versus ]l of 0.05-0.19/0.04-0.15 for other methods), whereas
other methods failed to capture at least one tissue type and often
produced mixed or fragmented domains (Supplementary Figs. 7 and
8a). For example, SCALE and scOpen failed to identify the eye and
HB2, while spaPeakVAE, pycisTopic and scBasset failed to capture the
spine and HB2.

To further quantify SPEED’s performance in spatial domain identi-
fication compared with other methods, we evaluated four key metrics:
ARI, NMI, DBl and SW as above. We found that SPEED-derived spatial
domains exhibited stronger agreement with the joint RNA-ATAC anno-
tations (Fig. 4f, ARI/NMI = 0.35/0.49 for SPEED versus ARI/NMI = 0.13-
0.31/0.25-0.46 for other methods). In addition, SPEED-derived
embeddings yielded the best DBI/SW values compared with other
methods, indicating superior tissue-specific separation (Fig. 4g,
DBI/SW =2.59/0.50 for SPEED versus DBI/SW =7.39-3.03/0.40-0.49
for other methods). These findings were further confirmed using
SPACEL-annotated spatial domains as reference, where SPEED con-
sistently achieved the best ARI/NMI and DBI/SW scores (Fig. 4h, ARI/
NMI =0.26/0.50 for SPEED versus ARI/NMI =0.09-0.18/0.24-0.38
for other methods; Fig. 4i, DBI/SW =2.45/0.49 for SPEED versus DBI/
SW =6.18-3.33/0.34-0.47 for other methods). These results indicate
that, regardless of the ground truth reference used, the epigenomic
spatial domains predicted by SPEED consistently align more accurately
with known tissue structures.

To further validate SPEED’s ability to identify spatial domains
across different SE technologies, we applied it to the mouse embry-
onicbrain MISAR-seq dataset from Jiang et al.”. This dataset contains
spatial ATAC-RNA-seq data across four developmental stages (E11.0,
E13.5, E15.5 and E18.5) with eight slices, each paired with hematoxylin
and eosin (H&E)-stained images and manual tissue annotations (Fig. 4j
and Supplementary Fig. 9). To further leverage H&E images, SPEED
extracted image features for each spot and incorporated them into
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Fig. 4 |Identifying epigenomic spatial domains of mouse embryos.

a-e, Spatial distribution of known tissue and organ locations from the tissue
image (a), clusters generated from combined ATAC and RNA information
provided from original research (b), transcriptomic spatial domains identified
by SPACEL (c), clusters generated using only raw spatial ATAC-seq data (d), and
epigenomic spatial domains identified by SPEED (e). ST, spatial transcriptomic.
f.g, NMland ARI (f), as well as DBl and SW (g), comparing epigenomic spatial
domainsidentified from raw and denoised data across six methods, using
jointannotations as the ground truth. h,i, Same as f (h) and g (i), but using

© Skull

transcriptomic spatial domains as the ground truth. j, Spatial distribution of
epigenomic spatial domains annotated with labels from the original study that
reference Kaufman'’s Atlas of Mouse Development and the Allen Brain Atlas (left)
and identified by SPEED (right) in mouse embryo brain MISAR-seq data. DPallm,
mantle zone of dorsal pallium; DPallv, ventricular zone of dorsal pallium. k,I, NMI
and ARI (k), as well as DBl and SW (1), comparing the corresponding epigenomic
spatial domains identified by raw measurement and denoised data from six
methods with manual annotations.

itslow-dimensional embeddings, integrating epigenomic, spatial and
image features (Methods). Using manual annotations as the ground
truth, we found that SPEED effectively distinguished the pallium, sub-
pallium and thalamus regions, whereas other methods failed to accu-
rately identify the boundaries of these regions (Supplementary Fig. 8b,
J1of 0.81/0.64/0.77 for SPEED versus J1 of 0.18-0.48/0.44-0.50/0.07-
0.10 for other methods). Moreover, the SPEED-derived spatial domains
exhibited the highest agreement with tissue structures (Fig. 4k, ARI/
NMI = 0.41/0.57 for SPEED versus 0.33-0.36/0.44-0.48 for other
methods) and more effectively separated distinct regions (Fig. 41,
DBI/SW =2.31/0.53 for SPEED versus 3.39-2.54/0.49-0.53 for other
methods). These results highlight SPEED’s robust ability to integrate

multimodal spatial information for precise epigenomic spatial domain
identification across diverse SE datasets.

To further demonstrate SPEED’s utility beyond embryonic tis-
sues, weapplieditto threebiologically complex datasets: (1) the adult
human hippocampus spatial ATAC-RNA-seq dataset from Zhang et al.’;
(2) the P22 mouse brain dataset from the same study®; and (3) the
spatial-Mux-seq dataset from the mouse model of neuroinflammation-
experimental autoimmune encephalomyelitis (EAE) by Guo et al.". All
three datasets reflect greater cellular heterogeneity and complexity
compared withembryonic samples.

Inthe human hippocampus dataset, only SPEED and scOpen suc-
cessfully distinguished the anatomically annotated choroid plexus
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Fig. 5| Enhancing signals in spatial CUT&Tag data. a,b, Spatial distributions of
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brains. ¢,d, PCC and cosine similarity between gene activity scores and denoised
gene expression for each spot before (x axis) and after (y axis) SPEED denoising
for H3K4me3 (c) and H3K27ac (d). Spots are colored according to sequencing
depth of spatial transcriptomics data.

and granule cell layer, whereas other methods failed to resolve
these structures or produced inaccurate, diffuse boundaries
(Supplementary Fig. 10a). In the P22 mouse brain, using the Allen
Brain Atlas® annotations as the ground truth, SPEED was the only
method that resolved four cortical layers, outperforming the
original study and other tools that identified two to three layers
(Supplementary Fig.10b,c). In the EAE dataset, SPEED uniquely recov-
ered the lateral ventricle and preserved the cortical layering consist-
ent with the Allen Brain Atlas—structures not discernible in the raw
data or with other denoising methods (Supplementary Fig. 10d,e).
Together, these results provide strong evidence that SPEED generalizes
effectively to adult and disease tissues and supports the discovery of
biologically meaningful spatial architecture from complex SE datasets.

Enhancing signals in spatial CUT&Tag data
Spatial CUT&Tag technology enables the study of histone modifica-
tions at spatial resolution, yet remains challenged by high noise levels.

Because SPEED does not rely on assumptions about spatial distribution,
it can be effectively applied to denoise spatial CUT&Tag data.

To evaluate SPEED’s performance, we analyzed publicly available
P22 mouse brain spatial-CUT&Tag-RNA data®, which simultaneously
profile genome-wide histone modifications and gene expression.
We focused on histone H3K4me3 and H3K27ac modifications, which
are associated with active chromatin states. Notably, we did not use
single-cell CUT&Tag data as a reference due to their higher sparsity
compared with spatial data*** (Supplementary Fig. 11 and Methods).

For histone modifications associated with active chromatin, an
effective denoising method should enhance the correlation between
gene activity inferred from open chromatin regions and gene
expression. We computed gene activity scores from both raw and
SPEED-denoised data. Across tissue-specific marker genes (Cux2, Fezf2,
Satb2 and Tspan2)®, SPEED-denoised data exhibited clearer spatial
expression patterns corresponding to tissue regions, along with higher
correlations with gene expression (Fig. 5a,b).
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To quantitatively assess SPEED’s impact, we computed the cor-
relation between gene activity scores and gene expression using the
Pearson correlation coefficient (PCC) and cosine similarity (Meth-
ods). We found that SPEED denoising substantially enhanced the
correlations between H3K4me3/H3K27ac modifications and gene
expression (Fig. 5c,d and Supplementary Fig.12). These results dem-
onstrate that SPEED is broadly applicable across different SE data
types, providing a versatile framework for signal denoising across
diverse SE datasets.

Ablation study of SPEED

To assess the contribution of individual componentsin SPEED’s model
design, we conducted ablation studies using the E13 mouse embryo
spatial ATAC-seq datafrom Zhang et al. and the mouse embryonicbrain
MISAR-seq data from Jiang et al. We compared the full SPEED model
against three ablated variant models that lacked either the single-cell
reference, spatialinformation orimage features. We found that remov-
ing any of the three components resulted in reduced performance
(Supplementary Fig.13a,b). We evaluated multiple image feature extrac-
tion networks, including ResNet50 and pathology-specific foundation
models*?®, and observed only marginal differences in model perfor-
mance (Supplementary Fig. 14). By default, SPEED used ResNet50. While
excluding image features had little impact on quantitative metrics, it
impaired the accurate identification of spatial domains, particularlyin
regions with well-defined structural boundaries, as the dashed white
boxes shownin Supplementary Fig.13c. Furthermore, incorporatinga
single-cell reference substantiallyimproved performance over using no
reference, whereas supplementing with alarge-scale atlas-level refer-
enceyielded only modest additional gains beyond the best-performing
individual single-cell dataset (Supplementary Fig. 13a,b). These find-
ings confirm that each component of SPEED contributes to its robust
performance in optimizing signal denoising and epigenomic spatial
domain identification.

Furthermore, we evaluated the impact of differentloss functions
onmodel performance. Among models trained with cosine distance
loss, binary cross-entropy loss and meansquared error loss, the model
with cosine distance loss consistently yielded denoised TSCAS with
higher FC and identified epigenomic spatial domains with superior
ARI/NMlscores (Supplementary Fig.15).In addition, to evaluate how
reference batch effects and data heterogeneity impact the perfor-
mance of SPEED, we compared models using single-batch references
versus whole-atlas datasets of comparable size. While SPEED exhibited
robust performance across all settings, the full atlas consistently
yielded the best results (Supplementary Fig.16). Notably, increasing
both the number and diversity of reference cells further enhanced
its performance, indicating that broader biological heterogeneity
in the reference improves the modeling of peak co-accessibility in
SPEED. We also assessed model convergence by tracking training
and validation losses, and observed consistent validation loss con-
vergence across all datasets, confirming stable and reliable training
(Supplementary Fig.17).

Discussion

Although SPEED is a promising and generalizable tool for improving
data quality and biological insights in SE, it still has certain limita-
tions. Currently, SPEED does not support batch effect correction or
cross-slice integration. Incorporating batch correction techniquesin
SPEED could help to extend its applicability to multislice SE datasets.
Interms of model design, SPEED uses a multilayer perceptron network
for dimensionality reduction within the DMF framework. Inthe future,
incorporating more advanced dimensionality reduction models—such
asgraphneural networks or transformer-based methods—into the DMF
framework to generate low-dimensional representations, along with
mechanisms for automatically learning fusion weights across modali-
ties, may further enhance the performance of SPEED. Besides, SPEED

is currently only pretrained on atlas-level single-cell chromatin acces-
sibility datasets of mouse embryo, adult mouse brain and human brain.
Expandingthe reference toinclude other tissues, single-cell CUT&Tag
data and disease-state single-cell epigenomic datasets, or adopting
hybrid strategies that integrate bulk and single-cell references when
single-cell data are unavailable, would enhance SPEED’s applicability
to broader SE data denoising tasks and the analysis of transcriptional
regulatory mechanisms in disease contexts.

Although SPEED achieves improved accuracy in signal recovery
by integrating spatial information, single-cell references and image
features, this integration inevitably comes with increased computa-
tional cost. Inresource-constrained settings, lighter-weight methods
such asscOpen offers advantages in terms of computational efficiency.
Nonetheless, this trade-off does not diminish the strengths of SPEED
interms of accuracy and its capacity for novel biological discoveries.
Overall, SPEED provides a robust and versatile framework for SE data
denoising, facilitating the accurate recovery of chromatin accessibility
and histone modification signals across diverse SE datasets.

Methods

SPEED model

Foradatamatrix X = {x;}, . € N,wherex;represents the value of cell
or spot i and peakjin the matrix, N represents the number of cells or
spots, and M represents the number of peaks, we assume that x;
distributes as a Bernoulli binomial distribution, x; ~ Bernoulli(p;).
SPEED draws on the DMF framework to model epigenomic data. DMF
was initially proposed for recommender systems. Originally developed
for recommender systems®, DMF uses two neural networks to learn
low-dimensional representations of the row and column vectors and
reconstructs a denser matrix viaaninner product or similar combina-
tion?. This makes DMF naturally suited for denoising sparse epig-
enomic matrices. Inour setting, rows correspond to cells or spots, and
columnsto peaks. SPEED learns low-dimensional embeddings for each
through two fully connected networks. Theirinner product yields the
predicted probability matrix X, representing the denoised data, with
aSigmoid activation® ensuring non-negativity.

X = {Xy}ynp Xy ~ Bernoulli (X5) (4))

where x; represents the value of cell or spot i and peakj in the
denoised matrix.

Thefully connected neural network for extracting low-dimensional
embeddings consists of three linear layers. Each output of the linear
layer is followed by a LayerNorm layer, Dropout layer and LeakyReLU
activation function to produce the final output. For single-cell data,
the embeddings Ena and P* for each cell and peak are derived by
separately reducing the epigenomic profiles via two distinct fully con-
nected neural networks. The reconstruction matrix is given by

X = Sigmoid <PF

signal

P+ Egen) @
where L islearned by the neural network shared with Enar TEPTE
senting the sequencing depth for each cell.

For spatial data, the embedding £ for each spot s obtained by
summing the outputs of three distinct fully connected neural networks,
which separately process the epigenomic profile embedding E:;nal,
spatial location embedding Efgc and stained image embedding
EP .Thus,

img

ED = ED  +EP +EP

spot signal loc img’ ®
Each peak embedding P is derived through another fully con-
nected neural network applied to the epigenomic profile. £ £”
N . ! gnal” ~loc

and £, _are fused with equal weights into £3 , as the network learns

1
to empﬁasize or de-emphasize each modality ina data-driven manner.
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The reconstruction matrix is
X = Sigmoid (Ep, PP +E ). @

where EZ‘; 0
senting the sequencing depth for each spot.

The input to the network for extracting cell or spot embeddings
isthe signal vector {x; }for each cell or spotiacrossall chromatinacces-
sible peaks and, for extracting peak embeddings, the network inputs
the signal vector {x,;} for each peak j across all cells. For spatial omics
data, H&E image data for each spot were segmented and passed
through aResNet50 (refs. 36,40) network (pretrained on the ImageNet
dataset) to extract 2,048-dimensional image features. The image fea-
tures obtained by the ResNet50 network served asinput to the stained
image network in SPEED. In addition to the default ResNet50, we also
provide options for UNI”” and Prov-Gigapath®® models, enabling users
toflexibly select different backbones for H&E image feature extraction.
Thelocation network receives k-order relative locational encodings y;
for each spot asinput, where

is learned by the neural network shared with £

signal”

repre-

2 oo iy | (&)

d:: o dii

R 1+log(-2L),if £ <k

dij — ( d ) d 6)
0, else.

d is the average Euclidean distance between all adjacent spots.
D = {dy},,, € R* represents the Euclidean distance matrixamongall N
spots, where d; represents the Euclidean distance between spot i and
spotj.

Because the number of cells or spots N varies greatly across epig-
enomic datasets, we adapt the size of the multilayer perceptron accord-
ingly to maintain the number of neurons within a practical range of 10>
to10° Intypical spatial epigenomic datasets, Nranges from10°to 10°,
while the number of peaks is usually on the order of 10°, necessitating
an adaptive strategy to ensure computational efficiency and stable
training. Therefore, for the networks extracting peak and spatial loca-
tion embeddings, the numbers of neurons in the three layers are
25% 4/ M Y M and 32, respectively. For the networks extracting

cell or spot embeddmgs the three layer sizes are 2.5 x -/ N;M YA

and 33, where the first 32 dimensions of the output vector represent
£< or £ and the last dimension encodes the sequencing depth

srgnal signal”

Eqeotn OF E5 .+ For the stained image embedding network, the three
Iayer srzes are 512, 128 and 32. Allmodality-specific features—including
epigenomic, spatial and image-derived representations—are ultimately
embedded into a shared 32-dimensional latent space through the
SPEED network, ensuring effective multimodal fusion.

Training processing
To address extreme sparsity in SE data, we use the cosine distance loss
function to constrain model training, defined as

11X Xllcos = 1 ~cosine (X, X) - 1cosine(XT,)?T), %)
2 2
where
1 N
cosine (X, X) = Z cosine (X;., X;.) (8)
l 1
M
cosine (XT,)?T> 1 Zcosme (x,.%;). )
j =1

For single-cell data, the loss function is the cosine distance
between the raw matrix and the reconstruction matrix:

loss = ||1X, Xl|cos- (10)
The model constrains the similarity between the original input
matrix X and the reconstructed matrix X from the DMF decomposition
through the loss function shown in equation (10) to ensure that the
DMF decomposition computed by the neural networks is accurate.
For spatial data, SPEED enforces additional constraints to align
peak embeddings with single-cell references and regulate the contribu-
tions ofimage features. Therefore, the loss functionis
P2+ B ||

img

loss = [1X, Xl|cos + AP — (1)
where a controls the strength of alignment to single-cell embeddings,
and S regulates the contributions of image features. As described
above, the model constrains the similarity between the original input
matrix X and the reconstructed matrix X from the DMF decomposition
throughtheloss functionshowninequation (11) to ensure that the DMF
decomposition computed by the neural networks is accurate.
For spatial datasets lacking high-resolution histological images,
weset =0 during training spatial data. The loss functionis as follows:
10ss = |IX, Xllcos + &IPS — PP 1%, 12)
For spatial datasets lacking matched high-quality single-cell refer-
ences, we skip the first stage of training on the single-cell dataset and
set a =0 during training spatial data. The loss function s as follows:
loss = ||X, Xllcos + B/IEY \|

img

13)

For spatial datasets lacking both single-cell reference and
high-resolution images, we set both « = 0 and 8 = 0 during training
spatial data. The loss function s as follows:

loss = ||1X, Xl|cos- (14)

During training, batches of cells or spots and peaks are sampled
separately. Each training epoch iterates through all the cell or spot
batches and all the peak batches. The batch size for cells and spots is

(%8 5) and the batch size for peaks is 2"(°&2 1), The model parame-
ters are optimized using the Adam optimizer* with a learning rate of
0.00001and weight decay of 0.001. Arandom subset 0of 1/6 of the cells
or spots and peaks is used as the validation set, with the remaining as
the training set. Training continues for up to 500 epochs, with early
stopping if the validation loss does not decrease over 30
consecutive epochs.

Binarization method

Thereconstruction matrix X follows a Bernoulli binomial distribution,
sowe can calculate the expected proportion of positive signals for each
spotand each peak:

(15)

(16)

-l

Subsequently, the binarization thresholds for each spot and peak,

b;and b;, are calculated as
b; = the g;th quantile of {x;.} 17)

b ; = the g ;th quantile of {x ;}. 18)

Finally, abinarized matrix X®is computed from the reconstruction
matrix X as
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=), w
1 if gy > 22

X; = 2 (20)
0, else.

Simulation data construction

We sampled scATAC-seq data from Jiang et al.’s E13.5 mouse embryo
dataset® and synthesized multiple single-cell profiles to generate
pseudo-spots. We predefined 400 spots distributed ina 20 x 20 grid.
These spots were arranged according to one of four predefined spatial
distribution patterns, including stripe-like, block-like, circular-like and
dispersed. Each distribution pattern contained four independent
spatial regions as ground truth labels, with spots synthesized from
SCATAC-seq data of different tissue origins. For each spot, the number
of cells was simulated using a Gaussian distribution N (10, 5). The spatial
region of each spot served as the ground truth for clustering
accuracy assessment.

Toavoid theintroduction of noise fromssingle-cell data, we filtered
the signal for each spot based on half of its cell count, setting values
below the threshold to zero. The resulting filtered matrix was used as
theground truthfor the simulated data to evaluate denoising accuracy.
To simulate the sparsity of real spatial ATAC-seq data, random drop-
outs were introduced into the ground truth matrix by setting certain
elements to zero with a defined probability. The dropout probability
dp;for each spotiwas generated based onits cell count, calculated as

dp; =1-n;x0.01, (21)
where n;is the cell count of spot i.

When using SPEED to denoise the simulated data, we used
only the portion of the mouse embryo sc/snATAC-seq atlas data
that does not overlap with the datasets used for simulation as the
single-cell reference.

Preprocessing of single-cell and spatial omics data

The raw fastq files of the sc/snATAC-seq data were processed using
CellRanger ATAC (v.2.0.0) with the default parameters and aligned
to the mm10 reference genome. Peaks were called by MACS2* using
the ‘addReproduciblePeakSet’ function in ArchR* after merging all
single-cell datasets.

For the spatial ATAC-seq data, we used the fragment files pro-
vided by the original study, aligned to the mm10 reference genome.
We performed denoising and downstream analysis using the peak
matrix generated by ArchR, which shared the same peak set with the
single-cell reference data.

For the bulk ATAC-seq data, we obtained fragment files and the
merged peak set for 16 samples of E13.5 mouse forebrain, midbrain,
hindbrain, embryonic facial prominence, limb, liver, heart and neural
tube tissues from ENCODE. We then converted the fragments into a
samples-by-peaks count matrix.

For the spatial CUT&Tag data, we used the fragment files from
the original study, aligned to the mm10 reference genome. We con-
structed a 500-bp-tiled matrix generated by ArchR for denoising and
downstream analysis.

Differential analysis

Differential analysis was performed on the E13.5 mouse embryo
SCATAC-seq data by grouping cells according to their tissue of ori-
gin to identify single cell TSCAS. We normalized the data using the
‘RunTFIDF function in Signac**, followed by using the ‘FindMarkers’
function with ‘test.use = ‘wilcox” to identify marker peaks for each tis-
sue. Marker peaks were filtered on the basis of log,FC >1 and adjusted
Pvalue <0.01.

Differential analysis was performed on the E13.5 mouse embryo
bulk ATAC-seq data based on the tissue origin to identify bulk TSCAS.
We used DESeq2* to conduct this analysis, selecting marker peaks with
log,FC >1and adjusted Pvalue <0.01.

For spatial data differential analysis, groups were defined on the
basis of joint annotations from the original study, derived from the
joint clustering of ATAC and RNA data. To evaluate the similarity of the
differential analysis results between the spatial ATAC-seq dataand the
ground truth (single-cell or bulk data), we applied the both correspond-
ing differential analysis workflows to the spatial dataand compared the
resulting marker peaks with the respective TSCAS sets. Marker peaks
were filtered using log,FC >0.8 and adjusted Pvalue <0.01.

Identification of epigenomic spatial domains

For each denoising method, we obtained spot embeddings and iden-
tified epigenomic spatial domains by applying the Leiden clustering
algorithmusing the ‘scanpy.pp.neighbors’and ‘scanpy.tl.leiden’ func-
tions in Scanpy*®, with ‘random_state=1"to ensure reproducibility. For
the raw (undenoised) data, we first performed latent semanticindexing
for dimensionality reduction using the ‘addlIterativeLSI’ function in
ArchRtogenerate spot embeddings from fragment files. Subsequently,
we applied the ‘addClusters’ functionin ArchR with default parameters
toidentify epigenomic spatial domains. In addition, for the simulated
data before denoising, we used the ‘muon.atac.pp.tfidf’ and ‘muon.
atac.tl.Isi’ functions in the muon package*’ to derive spot embeddings
based on the peak matrix.

Identification of transcriptomic spatial domains

For the E13 mouse embryo spatial-ATAC-RNA-seq data, we used
SPACEL* toidentify transcriptomic spatial domains as the ground truth
for the epigenomic spatial domains. The E13 mouse embryo scRNA-seq
data from Cao et al.* served as the single-cell reference for SPACEL.
Specifically, we used the ‘SPACEL.Spoint’ function for deconvolution
and the ‘SPACEL.Splane’ function to identify transcriptomic spatial
domains, with parameters n_neighbors=4and k=1.

Evaluation of denoised spatial ATAC-seq data

AUROC. AUROC is commonly used to evaluate the accuracy of pre-
dictions in binary classification tasks. Here, we used it to assess
the accuracy of chromatin accessibility predictions by different
denoising methods in simulated data. An AUROC score of 1 indi-
cates perfect prediction accuracy, while a score of 0.5 represents
random predictions.

Enhancer and promoter signal intensity. We obtained the chro-
matin states of the E13.5 mouse embryonic forebrain and hind-
brain from ENCODE. Then, we annotated the E13 mouse embryo
spatial-ATAC-RNA-seq data to the corresponding regions (FB1, FB2
and FB-VZ for forebrain and HB1, HB2 and HB-VZ for hindbrain) and
mapped the peaks into five chromatin states (promoter, enhancer,
transcription, heterochromatin and others). We scaled the denoised
values of each peak to a range of 0-1based on their 99th and 1st per-
centiles across different methods, ensuring comparability. Next, we
computed the mean signal values of enhancers or promoters in the
forebrain and hindbrain. A higher ratio of the mean signal at enhancers
or promotersrelative to other chromatin states indicates more specific
enhancement of signals at cis-regulatory element sites.

FC. We calculated the FC of TSCAS signals in specific tissues com-
pared with other tissues in the ATAC modality of E13 mouse embryo
spatial-ATAC-RNA-seq data. Tissue annotations were derived from the
jointannotations provided by the original study. Specifically, Face and
Limb were annotated as Limb; FB1, FB2, FB-VZ, HB1, HB2 and HB-VZ
were annotated as Brain; and Eye and Body5 were annotated as Eye.
Fortissuet, the FC for each marker m, is calculated as
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max (Zie{S{}Ximr/nT>
Fold change (m,) = ,

max iyl /1) =

where X = {x;}, . represents the denoised matrix. For tissue ¢, T rep-
resents each of the joint annotations corresponding to ¢, with the set
of included spots denoted as S],/=1,2,...,ny; and T° represents each
of the other joint annotations, with the set of included spots denoted
as $?,/=1,2,...,np. Higher FC values indicate greater tissue specificity
of TSCAS.

Moran’s I. We calculated Moran’s /to assess the spatial autocorrelation
of denoised TSCAS signalsin the ATAC modality of E13 mouse embryo
spatial-ATAC-RNA-seq data. For each spot, we identified its four nearest
neighbors within the same joint annotation from the original study.
Then, we computed Moran’s / for each peak using ‘scanpy.metrics.
morans_i’. Higher Moran’s /indicates higher spatial autocorrelation.

Evaluation of spatial ATAC-seq data differential analysis
results

JI. We used the JI to calculate the similarity between the differential
accessible peaks obtained from different denoising methods and the
TSCAS. For each joint annotation a from the original study, the set of
differential accessible peaks are denoted as P,,, and for each tissue tin
single-cell or bulk data, the TSCASis denoted as P,. The JIbetween them
is defined as

|Pan P

~ . (23)
|Pq U P

J(a.0) =

When comparing different methods, we calculate the average of
the maximum JIvalues for each tissue as the overall JIfor each method:

JI= %Z{] max, (J1(a,?), (24)

where Tisthe number of tissues. A higher]Jlindicates a greater similar-
ity between the differentially accessible peaks and TSCAS. Notably,
because scOpen denoises normalized peak matrices rather than raw
peak matrices, itis not suitable for differential analysis using the same
workflow as applied to raw single-cell and bulk data, and therefore
cannot be evaluated using]JI.

Evaluation of spatial ATAC-seq dimensionality reduction
results

We evaluated the separation of ground truth labels in the low-
dimensional latent space generated by different methods using the
DBland SW.

DBI. Let K denote the number of ground truth labels. s;represents the
average distance from all points in the ith cluster to its center in the
low-dimensional latent space, and d;represents the distance between
the centers of the ith and jth clusters. The DBl is then defined as

K

1
DBI = — R;i, 2
K[Z;n}zx i (25)
where:
Si+ Sj
=g (26)

Alower DBl indicates a greater separation of the ground truth
labels in the low-dimensional latent space.

SW. Let Kdenote the number of ground truth labels. d (k, /) represents
the distance between spot k and [ in the latent space. For each spot
k € Ci, let

1
a(k)= —— d(k,[ 27)
® |CK|_11ECK,I¢I< (&0
N |
b (k) = min — d(k1), 28
() L#K |CL‘[§L ( ) @8

where |Cy| is the number of spots belonging to cluster C. The SW is
computed as
& b(k)-a(k)

Silhouette = kz=:1 m.

(29)

Thescoreisthenscaled between 0 and 1, following the approach
usedinscib*. Ahigher SWindicates a greater separation of the ground
truth labels in the low-dimensional latent space.

Evaluation of epigenomic spatial domain identification
Ground truth annotations used for evaluation. For the E13 mouse
embryo spatial ATAC-RNA-seq data, we defined two ground truth ref-
erences: (1) clusters generated by joint clustering of spatial ATAC-RNA
data from Zhang et al. and (2) spatial domains inferred from spatial
transcriptomics data using SPACEL. According to the anatomical anno-
tations from the original study, we mapped these clusters and spatial
domainsto forebrain, hindbrain, eye, limb, facial and body, and so on.

For the mouse embryo MISAR-seq data, we used the manual
annotations of each tissue (from the original study, referencing Kauf-
man’s Atlas of Mouse Development’® and the Allen Brain Atlas®) as
the ground truth.

We used the NMIland ARIto evaluate the concordance between the
epigenomic spatial domains identified by different methods and the
ground truthlabels. The number of domains generated by each method
was consistent with the number of ground truth labels.

NMI. For ground truth labels 7and epigenomic spatial domains A:

2x I(T,A)

NMI(T.A) = 7o s

(30)

where I(.,.)represents mutual informationand H(.)represents entropy.
Alarger NMlindicates better alignment between the clustering and
the ground truth labels.

ARL The ARlis calculated as

RI — E(RI)

= max(RD) — E(RI)’ 31)

where

(32)

tp represents the number of true positives, and tn represents
the number of true negatives. A higher ARl indicates a better match
between the epigenomic spatial domains and the ground truth labels.

Evaluation of spatial CUT&Tag-RNA data denoising results

We assessed the accuracy of denoising results by calculating the simi-
larity between gene activity scores obtained from denoised spatial
CUT&Tag dataand gene expression. Gene expression data are denoised
using MAGIC®.. Specifically, we processed the raw fragment files and
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thebinarized denoised outputs from SPEED using ArchR to obtain gene
activity scores for the raw and data denoised by SPEED. Subsequently,
we assessed the correlation between gene activity scores and gene
expression at each spot using the PCC and cosine similarity.

PCC(X,Y) = % 33)
. XY

C X,V )= ———. 34

osine () = Xl Sl

Hyperparameter settings for benchmarking methods
Theselection of hyperparameters for eachmethod followed the official
tutorials and codes provided by the respective authors: spaPeakVAE™,
scBasset™, pycisTopic™, scOpen® and SCALE®.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

AIlISE, single-cell RNA-seq and scATAC-seq datasets used in this study
canbe downloaded from public websites or databases: E11.5,E12.5 and
E13.5 mouse embryo scATAC-seq data from 16 tissues at https://ngdc.
cncb.ac.cn/gsa/browse/CRA003910 (ref. 15). E12.5, E13.5 and E14.5
embryonic mouse cerebellumsnATAC-seq dataare availableinthe GEO
database under accession GSE178546 (ref. 28).E17.5 embryonic mouse
heartscATAC-seqdataareavailablein the GEO database under accession
GSE190977 (ref. 27).E12.5, E13.5 and E15.5 mouse embryo snATAC-seq
data are available in the GEO database under accession GSE214991
(ref.12). Three samples of E18 mouse embryo brain snATAC-seq data
are available at https://www.10xgenomics.com/datasets (ref. 16).
Mouse embryo scRNA-seq data are available in the GEO database
under accession GSE119945 (ref. 48). Human brain scATAC-seq data
are availableinthe GEO database under accession GSE147672 (ref. 57).
Adult mouse brain scATAC-seq data are available in the GEO data-
base under accession GSE246791 (ref. 22). E13 mouse embryo spatial-
ATAC-RNA-seq dataare available in the GEO database under accession
GSE205055(ref.8).E11-E18.5mouseembryo MISAR-seq dataareavailable
athttps://www.biosino.org/node/project/detail/OEP003285 (ref. 13).
P22 mouse brain Spatial-CUT&Tag-RNA-seq data are available in the
GEO database under accession GSE205055 (ref. 8). Human hippocam-
pusspatial-ATAC-RNA-seq data are availablein the GEO database under
accession GSE205055 (ref. 8). P22 mouse brain spatial-ATAC-RNA-seq
data are available in the GEO database under accession GSE205055
(ref. 8). EAE mouse brain spatial-Mux-seq data are available in the GEO
database underaccession GSE263333 (ref.11). E13.5 mouse embryonic
forebrain, hindbrain, midbrain and limb bulk ATAC-seq data from
ENCODE are available at https://www.encodeproject.org (ref. 29).
Chromatin state annotations for the E13.5 mouse embryonic fore-
brainand hindbrain are available at https://genome.ucsc.edu/cgi-bin/
hgTrackUi?hgsid=2471038369_034GqlYujAEyO4rHeqMnjX560AHY
&g=encode3RenChromHmm (refs. 30,31). Source data are provided
with this paper.

Code availability

The open-source package of SPEED is available via GitHub at https://
github.com/QuKunLab/SPEED. All codes and scripts used for the analy-
ses and figure plotting in this study are available viaZenodo at https://
doi.org/10.5281/zen0do.14948507 (ref. 58).
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assist with result evaluation. We compared the performance of the SPEED with 5 denoising methods: scOpen (v0.1.7), SCALE (v1.2.1),
scBasset (v0.1), spaPeakVAE (Github commit 3673cad), pycisTopic (v1.0.3)
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- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

All spatial epigenomics, single-cell RNA-seq, and single-cell ATAC-seq datasets used in this study can be downloaded from public websites and/or databases:
(1) E11.5, E12.5, and E13.5 mouse embryo scATAC-seq data from 16 tissues at https://ngdc.cncb.ac.cn/gsa/browse/CRA003910.

(2) E12.5, E13.5, and E14.5 embryonic mouse cerebellum snATAC-seq data are available in the GEO database under accession GSE178546.
(3) E17.5 embryonic mouse heart scATAC-seq data is available in the GEO database under accession GSE190977.

(4) E12.5, E13.5, and E15.5 mouse embryo snATAC-seq data are available in the GEO database under accession GSE214991.

(5) Three samples of E18 mouse embryo brain snATAC-seq data are available at https://www.10xgenomics.com/datasets.

(6) Adult mouse brain scATAC-seq data is available in the GEO database under accession GSE246791.

(7) Human brain scATAC-seq data is available in the GEO database under accession GSE147672.

(8) Mouse embryo scRNA-seq data is available in the GEO database under accession GSE119945.
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9) E13 mouse embryo spatial-ATAC-RNA-seq data is available in the GEO database under accession GSE205055.

10) P22 mouse brain spatial-ATAC-RNA-seq data is available in the GEO database under accession GSE205055.

11) Human hippocampus spatial-ATAC-RNA-seq data is available in the GEO database under accession GSE205055.

12) EAE mouse brain spatial-Mux-seq data is available in the GEO database under accession GSE263333.

13) E11-E18.5 mouse embryo MISAR-seq data are available at https://www.biosino.org/node/project/detail/OEP003285.

14) P22 mouse brain Spatial-CUT&Tag-RNA-seq data is available in the GEO database under accession GSE205055.

15) E13.5 mouse embryonic forebrain, hindbrain, midbrain, and limb bulk ATAC-seq data from ENCODE are available at https://www.encodeproject.org.
(16) Chromatin state annotations for the E13.5 mouse embryonic forebrain and hindbrain are available at https://genome.ucsc.edu/cgi-bin/hgTrackUi?
hgsid=2471038369_034GqlYujAEy04rHegMnjX560AHY&g=encode3RenChromHmm.

We also provide a public Zenodo repository for users to download all the above datasets (https://doi.org/10.5281/zenodo.14948507).
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size We used 6 spatial epigenomics datasets (14 slices), 7 scATAC-seq datasets, and 1 scRNA-seq dataset from published studies. The details of
these datasets are listed as follows:
(1) 1 slice from E13 mouse embryo spatial-ATAC-RNA-seq dataset: 2,187 spots;
(2) 8 slices from E13 mouse embryo brain MISAR-seq dataset: slice 1, 1,263 spots; slice 2, 1,353 spots; slice 3, 1,777 spots; slice 4,
2,183 spots; slice 5, 1,949 spots; slice 6, 1,939 spots; slice 7, 2,129 spots; slice 8, 2,248 spots;
(3) 2 slices from P22 mouse brain Spatial-CUT&Tag-RNA-seq dataset: slice 1, 9,548 spots; slice 2, 9,370 spots;
4) 1 slices from P22 mouse brain Spatial-ATAC-RNA-seq dataset: 9,215 spots;

) 1 slices from EAE mouse brain Spatial-Mux-seq data dataset: 9,686 spots;

(
(5
(6) 1 slices from human hippocampus Spatial-ATAC-RNA-seq dataset: 2,500 spots;




(7) E11.5, E12.5, and E13.5 mouse embryo scATAC-seq data: scATAC_Heart, 20,108 cells; scATAC_E13_5_Gonad-male, 20,005 cells;
SsCATAC_ForeBrain, 20,001 cells; scATAC_E13_5_Gonad-female, 20,000 cells; scATAC_Eye, 19,685 cells; scATAC_E12_5_Gonad_male, 18,325
cells; scATAC_SpinalCord, 15,803 cells; scATAC_13_5_Lung, 14,874 cells; scATAC_Kidney, 14,378 cells; scATAC_HindBrain, 13,836 cells;
SCATAC_Liver, 12,729 cells; scATAC_E12_5_ Gonad_female, 12,355 cells; scATAC_Intestine, 12,304 cells; scATAC_Pancreas, 10,316 cells;
SCATAC_Spleen, 9,296 cells; scATAC_Forelimb, 7,922 cells; scATAC_E11_5_Gonad-female, 7,695 cells; scATAC_E11_5_Gonad-male, 6,915
cells; scATAC_GermlLavyer, 6,755 cells; scATAC_Stomach, 5,506 cells; scATAC_12_5_Lung, 4,736 cells; scATAC_MidBrain, 4,674 cells;

(8) E12.5, E13.5, and E14.5 embryonic mouse cerebellum snATAC-seq data: 17,097 cells

(9) E17.5 embryonic mouse heart scATAC-seq data: 2,903 cells

E12.5, E13.5, and E15.5 mouse embryo snATAC-seq data: 1,655 cells;

(10) Three samples of E18 mouse embryo brain snATAC-seq data from 10X Genomics: atac_v1_E18 brain_cryo_5k, 4,747 cells;
atac_v1_E18 brain_fresh_5k, 4,030 cells; atac_v1_E18_brain_flash_5k, 3,598 cells

(11) Adult mouse brain snATAC-seq data: 2,355,842 cells

(12) Human brain scATAC-seq data: 70,631 cells

(13) Mouse embryo scRNA-seq data: 2,058,652 cells.

We comprehensively collected scATAC-seq datasets from mouse embryos spanning seven developmental stages and sixteen tissues, providing
sufficient coverage to construct a mouse embryo scATAC-seq atlas. We also collected published adult mouse brain scATAC-seq datasets
covering 117 brain regions, as well as human brain scATAC-seq datasets spanning 42 regions, enabling the construction of adult mouse and
human brain atlases. In addition, we analyzed fourteen spatial epigenomics slices generated using four technologies, five tissue types, and
spatial resolutions ranging from 20 to 50. Together, these datasets ensured that our algorithm was evaluated using sufficiently diverse and
representative data..
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Data exclusions  In Fig. 3c, scOpen was excluded from the benchmark of differential analysis results because scOpen denoises normalized peak matrices rather
than raw peak matrices. It is not suitable for differential analysis using the same workflow as applied to raw single-cell/bulk data, and
therefore cannot be evaluated using JI.

Replication All attempts at replication were successful. To make sure that the experimental findings are reproducible, we compared the performance of
SPEED with 5 denoising methods on 4 simulated and 14 real SE slices from various sequencing technologies.

Randomization  The experiments were not randomized, because we used all collected data for analysis.
Blinding Blinding was not used. The datasets analyzed in this study do not involve group allocations (e.g., control versus experimental groups). All

experiments were computational, and the execution of the evaluated methods does not permit blinding. Data evaluation was carried out
using multiple standard quantitative metrics, with the corresponding calculation procedures detailed in the Methods section.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods

n/a | Involved in the study n/a | Involved in the study
Antibodies |:| ChlIP-seq
Eukaryotic cell lines |:| Flow cytometry
Palaeontology and archaeology |:| MRI-based neuroimaging

Animals and other organisms
Clinical data
Dual use research of concern

Plants

X X X X X X X
Ooodoog

Plants

Seed stocks N/A

Novel plant genotypes  N/A

Authentication N/A
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