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Abstract
Understanding tumor heterogeneity and immune infiltrates within the tumor-immune microenvironment (TIME) is
essential for the innovation of immunotherapies. Here, combining single-cell transcriptomics and chromatin
accessibility sequencing, we profile the intratumor heterogeneity of malignant cells and immune properties of the
TIME in primary central nervous system diffuse large B-cell lymphoma (PCNS DLBCL) patients. We demonstrate diverse
malignant programs related to tumor-promoting pathways, cell cycle and B-cell immune response. By integrating data
from independent systemic DLBCL and follicular lymphoma cohorts, we reveal a prosurvival program with aberrantly
elevated RNA splicing activity that is uniquely associated with PCNS DLBCL. Moreover, a plasmablast-like program that
recurs across PCNS/activated B-cell DLBCL predicts a worse prognosis. In addition, clonally expanded CD8 T cells in
PCNS DLBCL undergo a transition from a pre-exhaustion-like state to exhaustion, and exhibit higher exhaustion
signature scores than systemic DLBCL. Thus, our study sheds light on potential reasons for the poor prognosis of PCNS
DLBCL patients, which will facilitate the development of targeted therapy.

Introduction
Primary central nervous system diffuse large B-cell

lymphoma (PCNS DLBCL) is a rare and aggressive non-
Hodgkin lymphoma, histologically accounting for the
majority (90%) of non-HIV-associated primary central
nervous system lymphoma1. Recent years have seen sig-
nificant progress in the treatment of PCNS DLBCL. The
MATRix regimen followed by either autologous stem cell
transplantation or whole-brain radiotherapy demonstrates
its efficacy, achieving approximately up to 80% 2-years
progression-free survival2–4. However, despite these
advances, therapeutic resistance and relapse remain
common and contribute to the poor prognosis for PCNS

DLBCL patients, with 5-year survival rates of only
30%–40%5.
In 2000, Alizadeh et al. categorized DLBCL into two

subtypes based on the cell of origin (COO): germinal
center B-cell-like DLBCL (GCB-like) and activated B-cell-
like (ABC-like) DLBCL. Although PCNS DLBCL is mor-
phologically similar to systemic/extracerebral DLBCL6,
previous lines of evidence (both gene expression ana-
lyses7,8 and immunohistochemical analyses9) have sug-
gested distinct molecular features and subtypes of PCNS
DLBCL compared with systemic DLBCL, as well as
extensive intertumoral heterogeneity of immune infil-
trates among DLBCL tumors10. However, the intratu-
moral heterogeneity within individual tumors remains
unclear in PCNS DLBCL, which has been highlighted by
emerging insights into its significant contribution to drug
resistance and tumor recurrence11.
High-throughput single-cell sequencing technologies

offer unprecedented access to assess intratumor hetero-
geneity and immune infiltrates within the tumor-immune
microenvironment (TIME). Recent efforts have been
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made to resolve the heterogeneity of extracerebral B-cell
lymphoma, such as follicular lymphoma (FL)12,13 and
systemic DLBCL13–16, by single-cell RNA sequencing.
Notably, checkpoint molecule expression on infiltrating
T-cell subsets has been profiled in FL and classic Hodgkin
lymphoma12,17. However, there are limited studies to
resolve the complexities of malignant cells and tumor-
infiltrating immune cells in PCNS DLBCL patients at
single-cell resolution. For example, Ruan et al. char-
acterized the phenotypic states of ~1000 diffuse large B
cells from the cerebrospinal fluid (CSF) of CNS DLBCL
patients15, but CSF could not completely reflect the
composition and transcriptional heterogeneity of the
TIME in these patients. Moreover, integrative analysis of
PCNS and systemic DLBCL at the single-cell level, which
would provide a broader understanding of PCNS DLBCL,
is also lacking.
Here, we depicted the landscape of the TIME in patients

with PCNS DLBCL by performing single-cell tran-
scriptome and chromatin accessibility assays on patients
who underwent surgical resection. We revealed that
phenotypically monoclonal or oligoclonal malignant B
cells showed aberrant expression programs. For example,
a plasmablast-like program was associated with a worse
prognosis. In addition, integrative analysis of malignant
PCNS DLBCL cells and extracerebral B-cell lymphomas
supported the presence of a PCNS DLBCL-specific BCL2-
high phenotype with a tumor-promoting feature. More-
over, we observed higher expression levels of exhaustion
signatures in tumor-infiltrating CD8 T cells from patients
with PCNS DLBCL compared with systemic DLBCL,
which may be one of the underlying reasons for the dismal
prognosis of PCNS DLBCL patients.

Results
Single-cell landscape of PCNS DLBCL
To characterize the malignant cells and their TIME of

PCNS DLBCL, we performed 5′ single-cell RNA sequen-
cing (scRNA-seq) on CD45+CD19+ and CD45+CD19−

immune cells isolated from a cohort of 8 immuno-
competent patients (two replicates for P73; Supplemen-
tary Table S1). Each sample was also examined with
paired single-cell T-cell receptor sequencing (scTCR-seq,
n= 7 patients) and B-cell receptor sequencing (BCR-seq,
n= 7 patients, two replicates for P73) (Fig. 1a and Sup-
plementary Fig. S1a). In total, we obtained 49,910 high-
quality single-cell transcriptomes, with an average of
10,570 unique molecular identifiers, representing 2469
genes (Supplementary Fig. S1b; see “Materials and
methods”). The TCR and BCR sequences were assembled
by using CellRanger: TCR signals were detected in 16,539
cells, and BCR signals were detected in 14,493 cells. We
used Scanpy18 to merge and normalize the scRNA-seq
profiles and visualized the cells via uniform manifold

approximation and projection (UMAP) (Fig. 1b). This
analysis indicated four major cell types, including B cells,
natural killer (NK) & T cells, myeloid cells, and oligo-
dendrocytes, based on expression levels of canonical
marker genes (Fig. 1b, c; see “Materials and methods”).
The TCR/BCR profiles were consistent with the identifi-
cation of major cell types (Fig. 1b). Data for the B cells and
NK&T cells were extracted, and we performed a second
round of clustering analysis that identified 16 B-cell
subtypes and 13 NK&T-cell subtypes (Supplementary Fig.
S2; see “Materials and methods”).
We also applied single-cell assay for transposase-

accessible chromatin using sequencing (scATAC-seq) to
investigate the chromatin accessibility of CD45+CD19+ and
CD45+CD19− cells from 5 of the above patients who were
subjected to scRNA-seq (Fig. 1a). After filtering out low-
quality cells and doublets, we obtained high-quality chro-
matin accessibility profiles for a total of 31,833 single cells
(Supplementary Fig. S1c–e; see “Materials and methods”).
We then leveraged the high-resolution annotations of cell
populations identified by scRNA-seq to annotate our
chromatin accessibility profiles to optimize the representa-
tion between these two cross-modality datasets by using
Seurat19 (Fig. 1d and Supplementary Fig. S3a). The chro-
matin accessibility analysis of known marker genes dis-
tinguished different cell clusters of scATAC-seq data (Fig.
1e and Supplementary Fig. S3a). The Jaccard similarity
index also showed that the cluster annotations were con-
sistent with the results of unsupervised clustering (Supple-
mentary Fig. S3b, c), indicating that we obtained a reliable
single-cell atlas of chromatin accessibility profiles.

Characterization of malignant B cells in patients with PCNS
DLBCL
To distinguish malignant from nonmalignant B cells, we

conducted a single-cell copy number variation (CNV) ana-
lysis of the scRNA-seq data using inferCNV20. We found no
significant CNV for cluster B0, however, other 15 B clusters
were heterogeneous in terms of chromosome copy number,
displaying canonical CNVs for PCNS lymphomas, such as
gain of chromosome 12 and/or loss of chromosomes 6 and
821 (Supplementary Fig. S4a). In addition, all B-cell clusters,
except the B0 cluster, significantly expressed a dominant type
of immunoglobulin light chain (Supplementary Fig. S4b, c),
which was consistent with the allelic exclusion phenotypes of
DLBCL tumor cells reported in previous studies13,22. These
results indicated that the B0 cluster cells are nonmalignant,
while the B1–B15 cluster cells are malignant. Moreover, we
examined the BCR clonotype of the B cells and found that
the malignant B cells in the individual patients presented
with monoclonal or rarely oligoclonal phenotypes (Supple-
mentary Fig. S5).
We then applied a gene signature-based classifier23 to

categorize the COO classification of PCNS DLBCL patients
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based on our scRNA-seq data. The results indicated that
malignant cells from P73, P201, P202, P203, and P205 are
dominated by the ABC-like subtype, while malignant cells

from P124, P145, and P182 are dominated by the GCB-like
subtype (Fig. 1f). Recently, B-cell states were proposed to
further clarify the COO hierarchy underlying the GCB/ABC

PCNS DLBCL
patients
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Fig. 1 (See legend on next page.)
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dichotomy14; states from S1 to S5 were reported to infor-
matively represent a state transition from GCB-like to ABC-
like subtypes. B-cell state classification analysis showed that
the B-cell states of the examined patients were consistent
with those of the COO classification (Fig. 1f).

Heterogeneous malignant meta-programs in PCNS DLBCL
To resolve the transcriptional spectrum of intratumor

heterogeneity in malignant B cells, we adopted an
unbiased method24,25 to uncover coherent sets of genes,
namely, meta-programs (MPs) that were preferentially co-
expressed by subsets of malignant cells based on the
scRNA-seq data. In total, we retained seven MPs that
recurred in four or more patients (Fig. 2a and Supple-
mentary Table S2). Based on their top-scoring genes,
these MPs spanned diverse functions, such as RNA spli-
cing, cell cycle, and ribonucleoprotein biogenesis func-
tions (Fig. 2b and Supplementary Table S3).
MP1 highlighted a subset of cells expressing genes

associated with RNA splicing (SRSF10, DDX17, and
SETX), indicating that the cells enriched for MP1 (the
cells enriched for a specific MP, hereafter referred to as
MPX cells, X= 1, 2, …, 7) were in a highly active tran-
scriptional state. Four additional MPs (MP2–MP5) con-
sisted primarily of genes related to immune regulation/
response, including humoral immune response (MP2:
XBP1, MZB1, and IGLC1), antigen processing, presenta-
tion via MHC class II (MP3: HLA-DRA, CD74, and B2M),
positive regulation of leukocyte cell‒cell adhesion (MP4:
ICAM1, CD83, and MAP3K8), and B-cell-mediated
immunity (MP5: IGHV3-7, SERPING1, and HLA-DPB1)
(Fig. 2a, b). In addition, MP6 reflected the S and G2/M
phases of the cell cycle (Supplementary Fig. S6a–d),
representing the proliferative feature of malignant cells in
PCNS DLBCL. MP7 was enriched for ribonucleoprotein
complex biogenesis (NPM1/3, NHP2, and SNRPF); a gene
set enrichment analysis (GSEA) indicated that MP7 cells
had elevated telomerase activity (Supplementary Fig. S6e),
suggesting that MP7 cells may promote survival by acti-
vating telomerase signaling pathways26.

To determine potential application of the MPs organi-
zation to other GC‐derived B-cell lymphomas, we aug-
mented our data with three publicly available scRNA-seq
datasets13,14,27. Specifically, these datasets consisted of 11
samples from 9 patients with FL/transformed FL (tFL),
4 samples from 4 patients with ABC DLBCL, and 5 sam-
ples from 5 patients with GCB DLBCL (Supplementary
Table S4). We embedded the malignant B cells from the
above public datasets together with those in our study via
UMAP (Fig. 2c), and we obtained an atlas of malignant
cells from multiple B-cell lymphomas consisting of
56,966 single cells (Fig. 2d–f), which facilitated the
exploration of MPs across these cancers. We used
DEPTH228 and general diversity index29 to quantify the
degree of intratumor heterogeneity of different B-cell
lymphomas, which suggested that PCNS DLBCL had
considerably higher diversity scores than systemic DLBCL
(Supplementary Fig. S7a, b).
Next, we calculated the MP signature scores for each

MP in each cell of the integrated dataset (Supplementary
Fig. S7c–i; see “Materials and methods”). We then cal-
culated the proportion of MPX cells (X= 1, 2, …, 7) in
each sample (Fig. 2g). MP1 cells (5.36% on average) and
MP2 cells (6.07% on average) accounted for a small
fraction of malignant B cells in PCNS DLBCL. We found
that MP1 cells were significantly enriched in PCNS
DLBCL over other B-cell lymphomas, suggesting that
MP1 is a PCNS DLBCL-specific MP; MP2 cells were
significantly enriched in PCNS DLBCL and ABC-like
DLBCL patients. MP6 cells reflected the proliferative
feature of both PCNS and systemic DLBCL (ABC-like,
GCB-like). Taken together, these MPs reflected the
unique features of PCNS DLBCL as well as the common
features between PCNS DLBCL and systemic DLBCL.

A PCNS DLBCL-specific phenotype with a tumor-
promoting feature
Given that the malignant B cells in PCNS DLBCL were

monoclonal or oligoclonal (Supplementary Fig. S4), their
intratumor heterogeneity in MPs was less likely to be

(see figure on previous page)
Fig. 1 Characterization of the PCNS DLBCL TIME using scRNA-seq paired with V(D)J profiling and scATAC-seq. a Schematic of the workflow
for tumor section processing and scRNA-seq paired with V(D)J profiling and scATAC-seq. b UMAP of all cells colored by cell clusters (left) from scRNA-
seq and immune receptor classification (right) based on scV(D)J data. Dashed circles highlight the major cell types. NK natural killer cells, Oligo
oligodendrocytes, gd T gamma-delta T cells, Treg regulatory T cells, CD8 Tex exhausted CD8 T cells, CD8 Tprolif proliferative CD8 T cells, CD8 Tmem-
like memory-like CD8 T cells. c UMAP of all cells colored by normalized expression levels of selected marker genes in the scRNA-seq data. Color bars
indicate the log-normalized expression values of each gene in single cells. d UMAP of all cells colored by cell clusters from scATAC-seq. Dashed circles
highlight the major cell types. e UMAP of all cells colored by gene activity scores of selected marker genes in the scATAC-seq data. Color bars indicate
the gene activity scores of each gene in single cells, which were calculated by summing the fragments intersecting with the region of gene body
and 2 kb upstream of transcription start site. f Donut plot showing the B-cell state classification (outer circle) and COO classification (inner circle) of
malignant B cells in each patient. Arrows indicate that B-cell states from S1 to S5 represent malignancy from more GCB-like to more ABC-like
subtypes. In (c) and (e), marker genes included CD3D for T cells, CD8A for CD8 T cells, MS4A1 for B cells, CD163 for myeloid cells, and MOG for
oligodendrocytes.
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caused by the origin of the tumor cells. Large-scale
chromosomal alterations that occur during tumor pro-
gression have been reported to contribute to intratumor
heterogeneity11. We used inferCNV20 to estimate the
sample-wise CNV of malignant B cells based on the
scRNA-seq data in our study (Fig. 3a and Supplementary
Fig. S8). We subsequently used UPhyloplot230 to build
clonality trees for each PCNS DLBCL patient based on the
inferCNV results (Fig. 3b and Supplementary Fig. S9a).
We observed a shallow hierarchy across samples (Sup-
plementary Table S5); taking P201 as a representative
example (the number of malignant cells in P201 was
4983), many malignant cells resided in leaf nodes D
(69.10%) and E (19.83%), which together constituted node
C (88.92%). When we mapped the leaf nodes of the P201
clonality tree into the UMAP embeddings, we found that
node I (including leaf nodes K, L, O, and P, consisting of
2.97% of malignant cells in P201) significantly overlapped
with the MP1 cells (Fig. 3c, d; P < 5.5e−252, hypergeo-
metric test). Interestingly, we observed obvious overlaps
between MP1 cells and cells in specific nodes in 6 out of 7
patients (Supplementary Fig. S9b), suggesting that
MP1 cells are a common clonal clade of malignant cells in
PCNS DLBCL with similar transcriptional features.
Moreover, MP1 cells across samples were characterized
by two known loci, loss of heterozygosity (LOH) of HLA-
D locus and 19p13 locus (Supplementary Fig. S10), which
have been associated with immune escape and invasive-
ness21. These results suggested that the subclonal CNVs
across PCNS DLBCL patients might underlie the forma-
tion of transcriptional heterogeneous subpopulations
during tumor evolution.
Since genes in MP1 were enriched for genomic func-

tions related to RNA splicing (Fig. 2b), we aimed to
uncover whether there were essential genes that promote
tumor survival through RNA splicing. We first used
velocyto31 to quantify the spliced and unspliced counts in
cells from P201 and found that cells in node I had a higher
proportion of unspliced counts than those in other nodes
(62% in node I vs. 26% on average in other nodes; Fig. 3e
and Supplementary Fig. S11a). We then conducted dif-
ferentially expressed gene (DEG) analysis between node I
cells vs. cells of other nodes using the spliced or unspliced
reads (Fig. 3f and Supplementary Table S6). When only
the spliced reads were counted, node I cells had DEGs
with known functions related to RNA splicing, such as
SRSF10 (Fig. 3f, g and Supplementary Fig. S11b). When
only the unspliced reads were counted, genes encoding
protein tyrosine kinases (LYN and BLK) and Rho GTPases
(ARHGAP15/17/24) were among the DEGs of node I.
These genes were reported to activate B-cell receptor
oncogenic signaling32,33 and membrane signal transduc-
tion34, respectively. In terms of unspliced counts, DEGs of
node I also showed enrichment for the regulation of B-cell

proliferation, in which the antiapoptotic gene BCL2 was
upregulated (Fig. 3h and Supplementary Fig. S11b). Both
B-cell receptor signaling and BCL2 have been reported to
promote tumor survival and drug resistance in
DLBCL35,36. Together, these results suggested that cells in
node I were capable of hijacking the expression of mul-
tiple splicing factors, such as SRSF1 and SF1, apparently
leading to dysfunctional gene splicing related to pro-
survival pathways and tumor progression.

Plasmablast-like MP2 cells are associated with a worse
prognosis in PCNS DLBCL
MP2 was marked by high expression of MZB1 and

XBP1 (Fig. 2a), which are known marker genes for plas-
mablast cells, suggesting a plasmablast-like signature in
malignant MP2 cells. Therefore, we used publicly avail-
able scRNA-seq data from a cohort of normal GC B
cells37 as a reference to annotate the B cells, including
malignant and nonmalignant B cells, from both the
scRNA-seq and scATAC-seq data generated in our study
(Fig. 4a and Supplementary Fig. S12a–d; see “Materials
and methods”). Notably, we detected a strong corre-
spondence between MP2 cells in PCNS DLBCL and the
annotated plasmablast cells (Fig. 4b, c; P= 0, hypergeo-
metric test). By performing a DEG analysis for MP2 cells
vs. other malignant cells and MP2 cells vs. nonmalignant
B cells (Supplementary Fig. S12e), we also found a strong
plasmablast-like signature in MP2 cells supported by low
expression ofMS4A1 and high expression levels of MZB1,
XBP1, and PRDM1 (Fig. 4d).
We next sought to identify the transcription factors

(TFs) that regulate the gene expression program of MP2
cells by investigating the chromatin accessibility of the
MP2 cells. We applied chromVAR38 and identified 98 TF
motifs that were significantly enriched in differentially
accessible peaks of MP2 cells compared with other
malignant cells (adjusted P < 1e−5; Supplementary Table
S7). Two out of three master regulators (PRDM1, XBP1,
IRF4) that are known to be necessary and sufficient to
drive plasma differentiation39 were among the top-
enriched TFs associated with significant chromatin
accessibility in MP2 cells (Fig. 4e and Supplementary
Table S7). We then ranked GC clusters from our data
according to their annotations, following the normal GC
differentiation lineage, and observed that XBP1 and IRF4
were activated while PRDM1 was unactivated in the late
GC differentiation stage (MP2 cells) both at the RNA
expression and motif activity levels (Fig. 4f), suggesting
that the differentiation program of the MP2 B-cell lineage
may be partially retained during tumor progression in
PCNS DLBCL.
Interestingly, analyses of the independent PCNS DLBCL

cohort (n= 20)10 and systemic DLBCL cohort (n= 229)40

indicated that patients with a high MP2 signature score
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Fig. 4 A plasmablast-like expression program in PCNS DLBCL. a Schematic of the workflow for joint analysis of scATAC-seq and scRNA-seq data
of B cells. We first mapped the PCA embeddings and cluster annotations of the reference dataset (King et al.) to our scRNA-seq data. Then, cluster
annotations were transferred from the scRNA-seq data to the scATAC-seq data through canonical correlation analysis. b UMAP of B cells colored by
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showed a significantly worse prognosis than those with a
low MP2 signature score (Fig. 4g and Supplementary Fig.
S12f).

Tumor-reactive CD8 T cells are pervasively exhausted in
PCNS DLBCL
Distinct dysfunctional states of CD8 T cells as well as

bystander CD8 T cells have been observed across human
tumors41–43. In our study, we identified six clusters of
exhausted CD8 T cells (CD8 Tex), one cluster of pro-
liferative CD8 T cells (CD8 Tprolif), and one cluster of
memory-like CD8 T cells (CD8 Tmem-like) (Fig. 5a and
Supplementary Fig. S2). We then jointly analyzed the
clonal expansion and expression of marker genes of these
CD8 T cells. The scTCR-seq data showed that the CD8
Tex and CD8 Tprolif cells (25.00%–71.76%, on average
42.16%) had higher proportions of clonal cells than the
CD8 Tmem-like cells (16.02%) (Fig. 5b). In addition, CD8
Tex and CD8 Tprolif cells had substantial TCR overlap
with each other, while the CD8 Tex and CD8 Tprolif cells
showed minimal TCR overlap with the CD8 Tmem-like
cells, according to the Morisita-Horn indices, which are
widely used to measure TCR overlap between groups44

(Fig. 5c and Supplementary Fig. S13a); these trends indi-
cate that CD8 Tmem-like cells have a distinct origin
compared to CD8 Tex and CD8 Tprolif cells.
Since the expression of exhausted molecules has been

widely used as an indicator of tumor-reactivity T cells in
human cancers45–48, we then surveyed the expression of
selected functional genes in all of the CD8 T cells to
evaluate the tumor reactivity of the classified cell clusters
(Fig. 5d and Supplementary Fig. S13b). We found that
CD8 Tex and CD8 Tprolif cells extensively expressed
both exhausted genes (including PDCD1, LAG3, and
HAVCR2) and cytotoxic genes (including GZMK, GZMA,
and GZMB), while CD8 Tmem-like cells expressed
known marker genes of bystander T cells49, such as a low
level of ENTPD1 (CD39) and high levels of the tissue-
resident marker genes CD69 and ITGAE (CD103) (Fig. 5e,
f and Supplementary Fig. S13c, d). Together, these find-
ings suggested that CD8 Tex and CD8 Tprolif cells are
tumor-reactive CD8 T cells and that CD8 Tmem-like cells
are a cluster of bystander T cells.
Considering that CD8 T cells of PCNS DLBCL perva-

sively expressed exhaustion molecules (Fig. 5d), we used a
predefined exhaustion-related gene signature50 to mea-
sure the exhaustion level for every single cell. We com-
pared the exhaustion scores of the CD8 T cells in PCNS
DLBCL with those that we calculated for tonsil samples
and cases including systemic DLBCL, FL, and reactive
lymphadenitis13,14,27 (Supplementary Fig. S14 and Table
S4; see “Materials and methods”). We found significantly
higher exhaustion scores in PCNS DLBCL patients than
in systemic DLBCL patients (Fig. 5g).

To delineate the exhaustion process of CD8 T cells, we
used Monocle351 to infer the developmental stages of the
tumor-reactive CD8 T cells from our scRNA-seq data and
scATAC-seq data, measured by predicted pseudotime
indices (Supplementary Fig. S15a; see “Materials and
methods”). We observed a state transition of CD8 T cells
from TCF7+PDCD1+ pre-exhaustion-like (pre.ex like) to
CCR5+PDCD1+ intermediate to HAVCR2+PDCD1+

terminal exhaustion (term.ex) in both the transcriptomics
and chromatin accessibility profiles (Fig. 5h, i), and this
finding was supported by the exhaustion scores (Fig. 5j, k),
expression trends for selected marker genes (Fig. 5l, m
and Supplementary Fig. S15b, c), and the spanning stages
of representative TCR clones (Supplementary Fig. S15d).
We then conducted a pseudotime ordering analysis to

assess the temporal variability in gene expression and
chromatin accessibility during the exhaustion process of
tumor-reactive CD8 T cells (Fig. 5n, o). Genes such as
TCF7 and MKI67 were expressed at the start of the
pseudotime trajectory (Fig. 5n), suggesting that the pre-
exhausted CD8 T cells have self-renewal capability at an
early stage52. Inhibitory molecules, such as PDCD1 and
HAVCR2, had higher expression levels toward the end-
points (Fig. 5n). Pseudo-ordering of the cells based on
motif activity indicated a gradual loss of pre.ex like-
specific TF motifs (e.g., AP-1, BATH, BATF, and TCF7)
and gain of term.ex-specific TF motifs (e.g., ETS, NF-Y,
and KLF; Fig. 5o) along the trajectory.

Discussion
Relapse and drug resistance are common in patients

with PCNS DLBCL and contribute to poor prognosis53.
The main cause of tumor recurrence and drug resistance
lies in intratumor heterogeneity and the complexity of the
TIME11,54, which is difficult to assess by microarray or
bulk sequencing. In the present study, we applied single-
cell transcriptome and chromatin accessibility analyses to
explore the TIME in PCNS DLBCL patients at single-cell
resolution.
Previous bulk genomic studies of PCNS DLBCL iden-

tified distinct expression profiles and genomic altera-
tions15,21 that distinguished PCNS from systemic DLBCL.
In this study, we further characterized the aberrant
expression programs of individual PCNS DLBCL patients
at single-cell resolution and explored how these programs
may contribute to recurrence and drug resistance (Sup-
plementary Fig. S16). For example, we identified a BCL2-
high phenotype (MP1 cells) specific to PCNS DLBCL that
exhibited significant LOH in the HLA-D locus, potentially
facilitating clonal escape from immune surveillance.
These malignant cells displayed elevated expression levels
of LYN and BLK, suggesting the activation of BCR sig-
naling55. These findings support the rationale for com-
bining BCR signaling inhibitors with therapeutic
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interventions for targeting MP1 cells. In addition, we
observed the presence of a plasmablast-like program
exhibiting a phenotype of XBP1+MZB1+MS4A1(CD20)−.
This subpopulation of malignant cells appeared to be
unresponsive to the current first-line immunotherapy
agent, rituximab, which targets CD20. However, given the
plasmacytic phenotype exhibited by these cells, agents
such as antimyeloma may offer therapeutic potential56.
These findings also suggest that a one-size-fits-all treat-
ment may not be effective in PCNS DLBCL. Instead, a
personalized or combination targeted therapy approach
that considers the unique characteristics of each patient’s
tumor heterogeneity may be more effective.
A bulk transcriptomic study previously characterized

the TIME of PCNS DLBCL into three immune subtypes
according to immune signatures10, but was unable to
identify the specific composition of different cell types in
PCNS DLBCL. In this study, we found that the TIME of
PCNS DLBCL was composed mainly of exhausted CD8
T cells and a cluster of bystander CD8 T cells (Supple-
mentary Fig. S16). Interestingly, we also identified a sub-
population of TCF7+PDCD1+ CD8 T cells in the TIME of
PCNS DLBCL, exhibiting a pre-exhausted-like phenotype.
Recent studies have demonstrated that pre-exhausted
CD8 T cells have the capacity to proliferate and exert
antitumor activity upon anti-PD-1 treatment in patients
with lung cancer57. Furthermore, unraveling the mole-
cular regulatory mechanisms underlying the development
of pre-exhausted CD8 T cells has been highlighted as a
key strategy for reversing T-cell exhaustion58. Therefore,
this population of pre-exhausted-like CD8 T cells may
represent a promising target for immune checkpoint
therapy, and the regulatory programs observed in our
study may facilitate the identification of critical molecules
involved in reversing T-cell exhaustion.
We produced high-quality single-cell profiles and con-

ducted unbiased analyses to reach our findings, yet there

are limitations in this study. A limitation of our analyses is
its limited samples, which might be not sufficient to fully
elucidate the heterogeneous gene programs in PCNS
DLBCL. Among the discovered meta programs, MP1 is
related to an aberrant splicing signature, and compre-
hensively confirming its mechanism remains a challenge.
Moreover, we applied computational strategies to inte-
grate scRNA-seq data and scATAC-seq data, which
remained an analytical challenge to the field. Cutting-edge
methods enabling profiling of chromatin accessibility and
transcriptome within the same single cell could be utilized
to precisely dissect underlying mechanisms that drive the
expression programs. Nonetheless, our high-throughput
and multi-omics profiling of PCNS DLBCL as well as our
follow-up analyses of independent cohorts facilitated the
understanding of both intratumor heterogeneity and
TIME complexity of PCNS DLBCL, which could help
promote the development of targeted therapies in this
malignancy.

Materials and methods
Patient samples and tumor tissue processing
This study was approved by the ethics committee of The

First Affiliated Hospital of the University of Science and
Technology of China (No. 2022-KY-091). Informed con-
sent was obtained in advance. The study was compliant
with all of the relevant ethical regulations regarding
research involving human participants. Eight patients who
underwent diagnosis for PCNS DLBCL tumors at The
First Affiliated Hospital of USTC were evaluated. All
samples were obtained as surgical biopsies and
mechanically dissociated into single-cell suspensions. The
scRNA-seq and scATAC-seq were performed using both
fresh and frozen samples (Supplementary Table S1). To
prepare frozen samples, we placed fresh cells in 90% FBS
(Gibco) supplemented with 10% DMSO and then cryo-
preserved them in liquid nitrogen.

(see figure on previous page)
Fig. 5 Characterization of exhausted clonally expanded CD8 T cells and bystander CD8 T cells in the TIME. UMAP of CD8 T cells colored by
CD8 T clusters (a) and clonal expansion of TCR clones (b) in the scRNA-seq data. CD8 Tprolif proliferative CD8 T cells, CD8 Tex exhausted CD8
T cells (including exhausted CD8 T-1–6), CD8 Tmem-like memory-like CD8 T cells. c Quantification of TCR overlap (Morisita index) between each
pair of CD8 T clusters in each patient. Each dot represents a patient. P values were calculated by a two-sided Wilcoxon rank-sum test. d Heatmap
of selected T-cell functional markers for CD8 T-cell clusters. e UMAP of CD8 T cells colored by expression levels of gene ENTPD1 (CD39).
f Genome tracking plot showing aggregated genomic peaks of ENTPD1(CD39) in the scATAC-seq data. g Boxplot showing the exhaustion scores
of CD8 T cells in different B-cell lymphoma categories. The Kruskal–Wallis test followed by a post hoc test of Fisher’s least significant difference
(LSD) was performed to evaluate the significance. Compact letter displays were used to show the significance of the pair-wise comparisons, in
which any two groups not sharing any letters were significantly different in exhaustion score. Reactive Lymph Reactive Lymphadenitis. h UMAP
of tumor-reactive CD8 T cells colored by exhaustion stages identified by trajectory analysis of the scRNA-seq data. i is the same as (h), but using
the scATAC-seq data. j Boxplot showing the exhaustion scores of tumor-reactive CD8 T cells in the different exhaustion stages. k is the same as
(j), but using the scATAC-seq data. In (j), (k), P values were calculated by a two-sided Wilcoxon rank-sum test. l Heatmap showing expression
levels of TCF7 and PDCD1 in tumor-reactive CD8 T cells in different exhaustion stages. m is the same as (l), but using the scATAC-seq data.
Heatmap showing the gene expression (n) and motif activity (o) dynamics along the pseudotime trajectory. In (g), (j), and (k), box boundaries
and middle lines correspond to the IQR and median, respectively. Whiskers extend to the lowest or highest data points that are no more than
1.5 times the IQR from the box boundaries.
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Flow cytometry gating
Cells were stained with CD19-APC, CD45-APC-Cy7,

DAPI, and Calcian for measurement by flow cytometry.
Due to the various proportions of malignant cells in cell
suspensions, we set up different gating methods for dif-
ferent tissues to manipulate the proportion of malignant
cells to nonmalignant cells (Supplementary Table S1).
After enough cells were sorted, they were spun down and
resuspended in 0.04% BSA (dissolved in 1× PBS). Trypan
blue dye staining was performed to determine quality and
quantity of cells by an Invitrogen Countess II device.
Then, the cell suspension was diluted to an appropriate
concentration before library preparation for scRNA-seq
or nuclei isolation for scATAC-seq.

Library preparation and sequencing of scRNA-seq paired
with BCR-seq and TCR-seq
Single-cell libraries were generated with the 10×

Genomics Chromium Single Cell 5′ (v1.0, n= 8) and V(D)
J (v1.0, n= 7) assays (Supplementary Table S1) before
sequencing on the Illumina NovaSeq 6000 instrument
with 150/8/150-bp (scRNA and scVDJ) read
configurations.

Nuclei isolation, library preparation, and sequencing of
scATAC-seq
After sorting, we isolated, washed, and counted the

nuclei suspensions according to the demonstrated pro-
tocol from 10× Genomics. Nuclei were spun down at
500× g for 5 min at 4 °C and resuspended in diluted nuclei
buffer. Then, we proceeded immediately to scATAC-seq
library construction using Chromium Single-Cell ATAC
Solution v1.1 kit (10× Genomics). Check size distribution
of libraries using an Agilent 2100 bioanalyzer before
sequencing. scATAC-seq libraries (n= 5) were sequenced
on a NovaSeq 6000 (Illumina) instrument with 50-bp
paired-end reads.

Quality control of scRNA-seq data
We collected a total of nine samples from eight PCNS

DLBCL patients for scRNA library preparation and
sequencing, and processed the FASTQ files with typical
workflow of CellRanger (v5.0.1) software to obtain gene
expression count matrix of each sample. Scanpy (V1.8.2)18

software was used to merge the raw count matrix of each
sample and subsequently conduct a quality control ana-
lysis. For gene filtering, genes that were expressed in less
than 50 cells were removed. For cell filtering, cells were
selected with the following principles: (1) the number of
expressed genes was from 500 to 6000, (2) the mito-
chondrial RNA content was lower than 15%, and (3) the
total counts of each cell were less than 50,000. Then,
DoubletDetection software (https://github.com/
JonathanShor/DoubletDetection) was used to detect

potential doublets in each sample (n_top_var_genes=
2000, boost_rate= 0.5, voter_thresh= 0.9). Notably, for
patient P201, we observed potential contamination and
used Gaussian mixture models to identify and remove
cells that expressed multiple canonical markers across cell
types; for patient P203, we also removed a cluster of cells
co-expressing multiple canonical markers across cell
types (co-expressing CD68, CD3D, CD19). Finally, a total
of 49,910 single-cell transcriptomes were retained after
quality control.

Quality control of scATAC-seq data
We performed scATAC library preparation and

sequencing on 5 of the samples that were processed for
scRNA sequencing. We first used typical workflow of
CellRanger ATAC (v1.2.0) software to preprocess the
samples, including alignment of raw reads to the hg38
human genome, peak calling for each sample, and com-
bining the outputs of each sample to obtain a unified
peak-barcode matrix. Then, we used Signac59 to perform
quality control following the standard workflow (cells
with a TSS enrichment score less than 2.5 were filtered
out). Moreover, scDblFinder60 was applied to detect and
remove potential doublets following the typical tutorial
for scATAC-seq data. After quality control, a total of
31,833 chromatin profiles were retained.

Dimensionality reduction and clustering of scRNA-seq data
and scATAC-seq data
For scRNA-seq data, we first normalized the gene

expression of each cell to 10,000 and performed a loga-
rithmic analysis. After that, we selected the top 2000 most
variable genes for subsequent dimensionality reduction
and clustering analysis. We conducted principal compo-
nent analysis (PCA) on the gene expression matrix and
used the first 40 principal components (PCs) for UMAP.
In the first round of clustering, major cell types, including
NK&T cells, B cells, myeloid cells, and oligodendrocytes,
were identified by Louvain clustering with a resolution of
0.05 and merged based on canonical markers (MS4A1 for
B cells; CD3D for T cells; TYROBP for NK cells; CD163
for myeloid cells; and MOG for oligodendrocytes). Next,
we performed a second round of clustering to further
characterize subpopulations of NK&T and B-cell types.
Owing to the variable amount and property of cells in
each major cell type, different parameters for clustering
were used. For the clustering of NK&T cells, the top
40 PCs were selected on the basis of 2000 highly variable
genes (HVGs) (resolution= 0.8). For the clustering of B
cells, the top 40 PCs were selected on the basis of 2000
HVGs (resolution= 0.5). As a result, we identified NK
cells (TYROBP), 8 CD8+ T subpopulations (LAG3,
PDCD1, and HAVCR2 for exhausted CD8 T; MKI67 for
proliferative CD8 T, GZMK, IL7R for memory-like CD8
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T), 2 CD4+ T subpopulations (GZMB for cytotoxic CD4
T, CD27 for activated CD4 T), Treg (FOXP3) and gdT
(TRDV2) for T-cell type based on canonical markers and
DEGs. We also identified 16 B-cell clusters for B-cell type;
the majority of B cells strongly clustered according to the
patient of origin. This phenomenon was also observed in
the Smart-seq data of PCNS DLBCL15 and single-cell data
of other human cancers61–63. Cluster B14 was filtered out
in the subsequent analysis because it was likely to be a
cluster of doublets (Supplementary Fig. S2b). Notably, in
the second round of clustering, we applied the harmony
algorithm64 to remove the potential batch effect among
samples.
For the scATAC-seq data, we used Signac’s typical

workflow to analyze the chromatin profiles. We normal-
ized the cell-peak matrix by using the term frequency-
inverse document frequency (TF-IDF) method. Then, we
selected the top 15% of highly variable features for
downstream dimensionality reduction and clustering. We
retained a reduced dimension representation of the
scATAC-seq data by running singular value decomposi-
tion on the TF-IDF matrix. UMAP was then calculated for
data visualization. We conducted a smart local moving
algorithm to cluster the chromatin profiles, yielding 23
clusters of cells. To annotate the major cell types by
canonical markers (MS4A1 for B cells; CD3D and CD8A
for CD8 T cells; CD3D and CD4 for CD4 T cells; TYROBP
for NK cells; CD163 for myeloid cells; and MOG for oli-
godendrocytes), gene activity scores of each gene, which
could be used as a proxy for gene expression, were cal-
culated by summing the fragments intersecting with the
region of gene body and 2 kb upstream of the transcrip-
tion start site. Then, we used the scRNA-seq data as a
reference and mapped cluster annotations from the
scRNA-seq data to the scATAC-seq data19. Specifically,
we aligned the gene activity scores and gene expression
matrix into a shared low-dimensional space by using the
canonical correlation analysis (CCA) algorithm. We then
identified anchors between the scRNA-seq data and
scATAC-seq data. The anchors are pairs of cells from
each dataset that are contained within each other’s
neighborhoods, which were finally used to transfer cluster
annotations from scRNA-seq data to scATAC-seq data.
Genome track plots of representative regions or genes
were generated by using ArchR65.

scBCR-seq and scTCR-seq data analyses
Raw sequencing FASTQ files of BCR and TCR libraries

were analyzed using CellRanger (v5.0.1). The CellRanger
outputs of each sample contained an output “filter-
ed_contig_annotations.csv”, which was used in the
downstream analysis. We then sequentially intersected
the filtered contig annotations of each sample with coarse
transcriptomic cell types (T cells and B cells) using

Scirpy66. Following the typical Scirpy analysis workflow,
we filtered out the cells that contained multiple chains
and defined the clonotypes based on the nucleotide
sequence of complementary-determining region 3. We
calculated the proportions of clonal cells among CD8
T-cell clusters by counting the proportion of clonally
expanded cells with a clone size of more than 10. More-
over, the clonal overlap between each pair of CD8 T
clusters was calculated using the Morisita index imple-
mentation of immunarch (https://github.com/
immunomind/immunarch), and the Berger-Parker index
was used to represent the dominant score of clonal
expansion with function alpha.berger_parker_d in skbio
(https://github.com/biocore/scikit-bio).

Identification of malignant B cells
We used two different strategies to identify malignant B

cells. First, we used inferCNV (V1.10.1)20 to estimate the
chromosomal CNVs following the standard workflow for
10× genomics with default parameters. Since we aimed to
distinguish malignant B cells from nonmalignant B cells,
we used all nonmalignant B cells as reference cells. Then,
to confirm the inferCNV results, we exploited the phe-
notypic allelic exclusion of malignant B cells and calcu-
lated the relative expression of kappa and lambda chains
for each cell. Accounting for the differential gene
expression level in various kappa or lambda genes, both
kappa genes and lambda genes with the maximum gene
expression level in each cell were selected for the calcu-
lation of relative expression.

COO classification
We applied a previously reported ABC and GCB clas-

sification method to each malignant B-cell23. Specifically,
we retained the genes previously reported to mark ABC
and GCB subtype67, then performed quantile normal-
ization and log2 transformation on gene expression
measurements of this gene in all malignant cells, followed
by z-normalization across these genes. Then ABC and
GCB scores were computed for each malignant cell by
taking the average of z-scores for ABC and GCB genes,
respectively. A combined subtype score was then com-
puted by taking the difference between ABC score and
GCB score. A malignant cell was classified as ABC if the
combined subtype score was > 0.25 and its GCB score was
< 0.75; and it was classified as GCB if the combined
subtype score was < –0.25 and its ABC score < 0.75. The
rest of the malignant cells belonged to the
unclassified group.

Single-cell meta-program analysis
We performed a consensus nonnegative matrix factor-

ization (cNMF) analysis on malignant cells from each
sample by using cNMF (v1.2)68 so that we retained
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modules for each sample. Notably, cluster B14 was filtered
before cNMF analysis because it was likely to be a cluster
of doublets (Supplementary Fig. S2b). Then, we used
Scanpy18 to calculate the gene scores of each module. The
gene scores of single cells for each module were also used
to manually select different thresholds to distinguish
specific module-enriched cells from nonenriched cells.
Next, we calculated the pair-wise Pearson correlations
within all modules and obtained a correlation matrix.
Finally, we performed hierarchical clustering on the cor-
relation matrix to compartmentalize the meta-programs.

Gene signature score analysis
Gene signature score analysis is widely used to quantify

the average gene expression level for a given gene set
compared to a randomly selected reference gene set. In
this study, we used the function score_genes in Scanpy18

with default parameters to quantify the activity of gene
sets derived from MP analysis, cell cycle state gene sets,
and exhaustion gene sets for CD8 T cells. The gene sets
for evaluating the cell cycle states were extracted from the
previously reported scoring system69.

Differential expression analysis
In this study, we performed DEG analysis to identify the

DEGs between two groups of cells by using the Wilcoxon
rank-sum test. To identify the DEGs between MZB1+ and
MZB1− or nonmalignant B cells, we first categorized the
malignant B cells into MZB1+ and MZB1– cells with a
threshold of 0.9 (MP2 signature score). To calculate the
DEGs of node I against other branches in P201 in terms of
spliced and unspliced counts, we first quantified the
unspliced counts, spliced counts31 and conducted DEG
analysis by using the Wilcoxon rank-sum test with a
threshold: adjusted P value ≤ 0.01, fold change ≥1.5 (Fig.
3f). The P value was corrected by using the
Benjamini–Hochberg method.

Clonal evolution analysis
To construct the evolution tree diagram, we used

inferCNV20 to detect sample-wise CNVs of malignant B
cells compared with nonmalignant cells. Cell clusters with
less than 20 cells in each sample were removed to filter
out the potential noise raised by cell clustering. We ran
inferCNV using the default parameters except setting
tumor_subcluster_partition_method and analysis_mode
to random_trees and subclusters. Then, with CNV ana-
lysis of each sample, the Python package UPhyloplot230

was used to draw a tumor cell evolution tree diagram to
study the evolution of tumor B cells in each sample. We
individually utilized the R package CopyscAT70 to infer
CNV data from the scATAC-seq data for each sample.
After obtaining the results of unsupervised clustering for
CNV data identified by NMF, we manually annotated the

nonmalignant cell clusters and used them as controls to
call CNVs in the malignant cell clusters.

Cell type mapping of external scRNA-seq data
We used the ingest function in Scanpy18 to project the

cell annotations from the published scRNA-seq data of
normal tonsils71 onto our data based on the PCA
embeddings to prove that MP2 cells closely resembled a
cluster of plasmablast-like cells.

Trajectory inference of CD8 T cells from the scRNA-seq
data
Since bystander T cells were supposed not to be asso-

ciated with tumorigenesis and progression, we performed
trajectory inference on tumor-specific CD8 T cells
(exhausted CD8 T-1, exhausted CD8 T-2, exhausted CD8
T-3, exhausted CD8 T-4, exhausted CD8 T-5, exhausted
CD8 T-6 and prolif CD8 T cells). First, a Gaussian mix-
ture model was applied to remove the potentially con-
taminated cells based on the expression levels of gene
MS4A1. Then, we borrowed the methods from Zheng
et al.42 to define a gene blacklist and disassociation-
induced gene (DIG) signature. The gene blacklist con-
tained genes located on the X and Y chromosomes,
immunoglobulin genes, and T-cell receptor genes from
the R package biomaRt, ribosome-protein-coding genes,
MALAT1, and marker genes of the exhausted CD8 T-3
cluster, which are associated with tissue dissociation
operations, including heat shock protein-encoding
genes72. We excluded genes from the blacklist and iden-
tified the top 2000 genes as HVGs. Then, the unwanted
effect caused by the DIG signature, cell cycle, percentage
of mitochondrial UMI counts, and total UMI counts were
regressed out before performing PCA. The donor effect
was removed by Harmony64. Then, the harmony
embeddings were used to build the neighborhood graph
for cell clustering and UMAP. Then, Monocle351 was
adopted to introduce pseudotime and build trajectories
based on the cell clusters and UMAP embeddings. The
cell exhibiting the highest expression level of TCF7 was
set as the root cell, and the pseudotime was calculated by
the function order_cells. We divided the cells into 100
portions according to the pseudotime and calculated a
pseudobulk expression matrix. Identification of the top
variable features across the trajectory was performed
using ArchR’s plotTrajectoryHeatmap function based on
the pseudobulk expression matrix.

Trajectory inference of CD8 T cells from the scATAC-seq
data
Based on the mapped cluster annotations based on the

scRNA-seq data, we selected tumor-specific CD8 T cells
(exhausted CD8 T-1, exhausted CD8 T-2, exhausted CD8
T-3, exhausted CD8 T-5, and prolif CD8 T cells) for
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trajectory analysis. First, we used Signac’s FindInte-
grationAnchors function to find integration anchors
between the five patients’ cells based on the previously
calculated LSI embeddings. Then, Signac’s Inte-
grateEmbeddings function was used to calculate the
integrated LSI embeddings. The RunUMAP, FindNeigh-
bors, and FindClusters functions were performed using
the integrated embeddings. Gene scores were calculated
using ArchR’s addGeneScoreMatrix function, and gene
score imputation was performed with Magic using
ArchR’s addImputeWeights function73. Then, we adopted
Monocle351 to build the trajectory. The cluster with the
highest score for the TCF7 gene was specified as the root,
and then the pseudotime was calculated using the func-
tion order_cells. The enrichment of motif deviation was
performed with ChromVAR38 using ArchR’s addDevia-
tionsMatrix function. We added the trajectory built by
Monocle3 to the ArchR project and then used ArchR’s
functions getTrajectory and plotTrajectoryHeatmap to
identify top variable motif deviations across the trajectory.

Survival analysis
To confirm whether MP2 was associated with clinical

outcomes, we conducted a survival analysis. Information
for twenty PCNS DLBCL patients and 234 systemic
DLCBL patients with complete follow-up records was
downloaded from GEO (GSE155398)10 and NCICCR
DLBCL40, respectively. All systemic DLBCL and PCNS
DLBCL patients had records of overall survival. Moreover,
20 PCNS DLBCL patients had records of RFS, and 229 of
234 systemic DLCBL patients had records of PFS. We first
calculated the single-sample GSEA signature score of
MP2 by using the function calculate_sig_score in the R
package IOBR74,75 and then splited the patients into a
high-expression group and a low-expression group with
the optimal cutpoint determined by the surv_cutpoint
function in the R package survminer (https://github.com/
kassambara/survminer) with the parameter minprop=
0.3. Finally, we employed the survfit function in the R
package survival (https://github.com/therneau/survival)
to evaluate the impact of MP2 on the clinical outcomes
(parameters: type=Kaplan‒Meier, error= tsiatis).

Motif enrichment analysis
We observed a subset of malignant B cells showing the

characteristics of plasmablast signatures in normal B cells.
We aimed to dissect the potential regulators underlying
this subset of malignant B cells. First, we applied the CCA
algorithm implemented in Seurat19 to transfer the GC
cluster annotations from the scRNA-seq data to the
scATAC data. Then, we recalled peaks independent of the
groups of GC annotations and then combined them by
using the CallPeaks function in Signac59. In addition, we
conducted a differential motif activity analysis on a per-

cell motif activity score obtained from chromVAR ana-
lysis38. We also used known motifs in the JASPAR data-
base (JASPAR2020) to find overrepresented motifs that
were enriched in plasmablast-like malignant B cells.
Finally, the top 20 overlapping motifs between over-
represented motifs and differential activity motifs
were shown.

Integrative analysis with published scRNA-seq data
To determine whether the subset of plasmablast-like

malignant B cells is also present in other GC-derived B
lymphomas, we conducted an integrative analysis with
malignant B cells of systemic DLBCL and FL patients in
three other independent cohorts13,14,27 that were sub-
jected to scRNA-seq using the routine scRNA-seq ana-
lysis workflows of Scanpy with default parameters.
Malignant cells in each dataset were extracted based on
the cluster annotations in the original studies. Moreover,
to compare the exhaustion degree of CD8 T cells between
PCNS DLBCL and extracerebral B lymphomas, we also
conducted an integrative analysis with CD8 T cells from
the same datasets as above using the same analysis pro-
cess. We extracted CD8 T cells based on the cluster
annotations in the original studies. After the integrative
process, the T-cell exhaustion signature was used to cal-
culate the exhaustion score.

Comparison of intratumor heterogeneity
We employed two methods to quantify the degree of

intratumor heterogeneity (ITH) in PCNS DLBCL and
compare it with those in other B-cell lymphomas. Firstly,
we quantified the tumor’s ITH level based on the standard
deviations of absolute z-scored expression values of genes
by using the DEPTH2 algorithm28. We calculated the
mean expression of each gene across all cells to form a
pseudo-bulk RNA-seq data as the input of DEPTH2. We
also applied the general diversity index29 to quantify the
ITH degree at the single-cell level. Specifically, after
normalization and dimensionality reduction, all malignant
cells were clustered into different clusters by the unsu-
pervised Louvain algorithm with default parameters.
Then, the diversity index was calculated using the cellular
frequencies over clusters across a range of the order of
diversity q values. Different q values correspond to dif-
ferent meanings: Species (clonal) richness of a sample is
given by q= 0. The Shannon index (log scale) can be
found when q approaches 1. The Simpson index, which
approximates the probability that any two cells are iden-
tical, emerges from the case of q= 2.

Signature enrichment analysis
GSEA was performed by using GSEApy (https://

github.com/zqfang/GSEApy) with gene sets from the
Molecular Signatures Database (MSigDB). Gene Ontology
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(GO) enrichment analysis in this study was performed by
using clusterProfiler (V4.2.2)76.

Statistics
DEG analysis in this study was performed by using the

Wilcoxon rank-sum test. In Fig. 5g, the Kruskal‒Wallis
test followed by a post hoc test of the criterium Fisher’s
LSD was performed for P value calculation using the
kruskal function in the R package agricolae (https://
github.com/cran/agricolae). Other statistical methods and
tests used in this paper are described in the corresponding
figure legends.
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