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SPACEL: deep learning-based characteriza-
tion of spatial transcriptome architectures

Hao Xu1,6, Shuyan Wang2,3,6, Minghao Fang2, Songwen Luo1, Chunpeng Chen1,
Siyuan Wan2,3, Rirui Wang1, Meifang Tang1, Tian Xue 4, Bin Li 5 ,
Jun Lin 1,2 & Kun Qu 1,2,3

Spatial transcriptomics (ST) technologies detect mRNA expression in single
cells/spots while preserving their two-dimensional (2D) spatial coordinates,
allowing researchers to study the spatial distribution of the transcriptome in
tissues; however, joint analysis of multiple ST slices and aligning them to
construct a three-dimensional (3D) stack of the tissue still remain a challenge.
Here, we introduce spatial architecture characterization by deep learning
(SPACEL) for ST data analysis. SPACEL comprises three modules: Spoint
embeds amultiple-layer perceptronwith a probabilisticmodel to deconvolute
cell type composition for each spot in a single ST slice; Splane employs a graph
convolutional network approach and an adversarial learning algorithm to
identify spatial domains that are transcriptomically and spatially coherent
across multiple ST slices; and Scube automatically transforms the spatial
coordinate systems of consecutive slices and stacks them together to con-
struct a 3D architecture of the tissue. Comparisons against 19 state-of-the-art
methods usingboth simulated and real STdatasets fromvarious tissues and ST
technologies demonstrate that SPACEL outperforms the others for cell type
deconvolution, for spatial domain identification, and for 3D alignment, thus
showcasing SPACEL as a valuable integrated toolkit for ST data processing and
analysis.

Spatial transcriptomics (ST) technologies have enabled researchers
to detect the spatial distribution of, in principle, the entire tran-
scriptome in histological tissue slices and thereby substantially
improved our understanding of organ architecture1–5 and disease
microenvironments6–10. There are two broad categories of experi-
mental ST techniques that can either i) detect the expression of a
partial transcriptome at single cell resolution or ii) detect an entire
transcriptome without single-cell resolution. ST techniques based
on in situ hybridization and fluorescencemicroscopy (image-based),
such as seqFISH11, osmFISH12, andMERFISH13 probe only hundreds to

thousands of transcripts in a slice, but can achieve single cell and
even subcellular resolution. ST techniques based on next-generation
sequencing (seq-based), such as 10X Visium14, Slide-seq15,16 and
Stereo-seq4 detect the expression of the whole transcriptome, but
the resolution is restricted by the size of spots in the ST slices. Owing
to limitations of these experimental ST techniques, many analytical
methods have been developed to impute the undetected transcripts
on each slice17–20 and/or to deconvolute the cell types in each
spot21–29, aiming to detect an entire transcriptome while retaining
single-cell resolution.
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A recent computational task for ST data analysis is the identifi-
cation of clusters of cells/spots that are coherent in both tran-
scriptome expression and spatial coordinates—i.e., dissecting the so-
called spatial domains to characterize the spatial architecture present
within an ST slice. Several methods have been developed to accom-
plish this task. For example, BayesSpace employs aBayesianmodel and
aMarkov chainMonte Carlo approach to improve the resolution of ST
data to the subspot level and then identifies spatial domains by clus-
tering these subspots30. SpaGCN adopts a graph convolutional net-
work to integrate the transcript expression level data with their spatial
location information to identify spatial domains31. STAGATE uses an
adaptive graph attention auto-encoder model to learn the similarities
between the neighboring spots to identify spatial domains32. stLearn
leverages a Louvain clustering algorithm and k-d tree nearest neighbor
searching to identify spatial domains in ST slices33. The above-
mentioned methods were designed for analyzing single ST slices.

The current trends for the rapid development and application of
ST technologies suggest that a large number of ST slices from diverse
tissues (and conditions) will be generated in scientific and medical
studies for the foreseeable future13,34–37. Accordingly, there is an urgent
need for computational tools that can quickly and efficiently imple-
ment integrated analysis of data from multiple ST slices. STACI38,
PRECAST39, and STAligner40 aimed to identify spatial domains jointly
acrossmultiple ST slices. Thesemethods utilize gene expression as the
input for their models, specifically, STACI adopts an over-
parameterization approach, PRECAST uses simple projections of the
batch effects onto the space of biological effects and STAligner
employs triplet-loss for training. However, it has been reported that
cell-type distribution is more robust for identifying uniform domains
across multiple slices9.

Accurately identifying functional spatial domains across multiple
slices and reconstructing the 3D architecture of tissues offer invaluable
opportunities for significant biological discoveries in various practical
applications. The PASTE41 and STAligner40 methods made an effort to
address these difficulties by integrating multiple slices into a single
center slice, and/or aligning the consecutive slices to construct a 3D
architecture of the tissue. PASTE assumes complete 2D overlap of sli-
ces, which restricts its applicability to cases where slices have only
partial overlap. STAligner relies on selected landmark domains shared
across slices for alignment and does not utilize correspondences for
each individual spot in adjacent slices. As a result, these approaches
can encounter misalignment issues in accurately capturing the global
structure. Overall, constructing a stacked 3D alignment of the tissue
still remains a great challenge for ST datasets with substantial defects.

Here, we developed SPACEL, a deep-learning-based toolkit com-
prising three modules—Spoint, Splane, and Scube—covering three
analysis tasks for ST data (Fig. 1a). Spoint predicts the cell type com-
position of spots obtained by seq-based ST technologies such as 10X
Visium. Splane jointly analyzes multiple ST slices and identifies spatial
domains based on the cell type composition and spatial coordinate
information of spots/cells. Scube aligns multiple consecutive slices
and constructs a stacked 3D architecture of the tissue based on the
coordinates of the spatial domains identified by Splane. We applied
SPACEL to analyze 11 ST datasets comprising 156 slices acquired using
the 10X Visium, STARmap, MERFISH, Stereo-seq, and Spatial
Transcriptomics1 technologies (Supplementary Data 1). SPACEL out-
performed other state-of-the-art methods for each of the three
examined analysis tasks and thus represents a valuable integrated
toolkit for ST data processing and analysis.

Results
Workflow of SPACEL
The full architecture of SPACEL is illustrated in Fig. 1a, including the
modules Spoint, Splane and Scube. Our motivation for developing the
Spoint module is the need to perform cell type deconvolution on ST

slices generated by seq-base ST technologies, which is also required
for subsequent analysis of SPACEL. Spoint embedded a multiple-layer
perceptron (MLP) with a probabilistic model to deconvolute the cell
type compositionof eachST spot (Fig. 1b,Methods). Spoint leverages a
combination of simulated pseudo-spots, neural network modeling,
and statistical recovery of expression profiles, which allows it to pro-
vide a more robust and accurate framework for estimating cell-type
proportions in real ST data. For image-based ST data (i.e., single-cell
resolution), users can simply use single-cell analysis tools (e.g., Seurat42

and Scanpy43) to cluster cells and usemarker genes to identify the cell
type of each cell cluster.

Splane employs a graph convolutional network (GCN) approach44,45

and an adversarial learning algorithm46 to identify spatial domains by
jointly analyzing multiple ST slices (Fig. 1c, Methods). First, for each ST
slice, Splane calculates an adjacencymatrix of cells/spots based on their
distance in space. Then, Splane constructs a GCN model from the
adjacency matrix and the cell type composition of cells/spots, and
employs an adversarial learning algorithm46 to learn the latent features
shared across all of the analyzed ST slices; we term this a joint analysis
scheme. Next, Splane applies a K-means clustering algorithm47 to
aggregate cells/spots with similar patterns of the shared latent features,
where each of these cell/spot clusters is referred to as a spatial domain.
All existing spatial-domain identification tools commonly utilize gene
expression as input for their analyses and most of them follow a single
analysis scheme. Splane distinguishes itself by utilizing cell-type com-
position as the input and adopting a joint analysis scheme. Furthermore,
Splane incorporates an adversarial training to explicitly tackle and
eliminate batch effects across multiple slices.

For ST datasets containing consecutive slices, Scube aligns the
Splane predicted coordinate systems for each pair of adjacent slices
and then constructs a stacked 3D architecture of the tissue, which is
fully automated and does not require anymanual alignment (Fig. 1d,
Methods). Briefly, Scube builds a mutual nearest neighbor (MNN)
graph between the cells/spots of two adjacent slices based on the
coordinate information of spots and constructs an alignment
objective function between them. This function serves as the foun-
dation for aligning the slices and treats the alignment task as an
optimization problem. Unlike existing tools like PASTE or STAligner,
Scube is specifically designed to handle partially overlapped slices
by incorporating a penalty term that accounts for the proportion of
overlapped spots in adjacent slices. Scube then employs a differ-
ential evolution optimization algorithm48 to search for the optimal
translation vectors and rotation angles for each slice, and aligns
them by transforming the coordinates of every slice accordingly.
Finally, Scube stacks the transformed slices to construct the 3D
architecture of the tissue.

In summary, Spoint, Splane, and Scube accomplished three ana-
lysis tasks of ST data in turn: cell type deconvolution, spatial domain
identification, and 3D architecture construction. We have carefully
designed each module of our method in an innovative way to address
the potential limitations of current state-of-the-art methods (Supple-
mentary Fig. 1). Specifically, Spoint employs a statistical model, a
pseudo-spot simulation, a deep learning technique, and an elimination
of variation between reference and ST data. In contrast, other tools
often miss one or more of these features. Splane is unique in its
combination of a cell type composition as input— a featurenot utilized
by any other tools, and adversarial training in the GCN model — a
common approach first been employed tomitigate batch effects in ST
data. Scube employs a unique global optimization strategy for 3D
alignment, setting it apart from its peers. While each of thesemodules
canoperate independently, they are alsooptimized towork seamlessly
in a unifiedworkflow. This adaptability enables SPACEL to analyze data
from diverse experimental platforms while simultaneously providing
an all-encompassing and streamlined solution for ST data
interpretation.
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To ensure the robustness of SPACEL, we conducted extensive
experiments to evaluate its performance across various hyperpara-
meter settings.Our results demonstrate that Spoint, Splane, and Scube
exhibit superior robustness to hyperparameter variation compared to
other state-of-the-artmethods (Supplementary Fig. 2a–c), highlighting
the effectiveness of SPACEL inproviding reliable and consistent results
across different experimental settings.

Spoint accurately deconvolutes cell-type composition
To construct the training set for Spoint and other deconvolution
methods, we simulated pseudo-spots using the scRNA-seq dataset by
assuming a normal distribution of the number of cells and the
number of cell types per spot. Our simulations generated pseudo-
spots similar to real ST data (MERFISH data from human brain
tissue49; Supplementary Fig. 2d–k). We compared the performance of
Spoint with state-of-the-art methods for cell type deconvolution,
including Cell2lacation, SpatialDWLS, RCTD, STRIDE, Stereoscope,
Tangram, DestVI, Seurat, SPOTlight, and DSTG using 32 simulated
datasets from a benchmark study50 (Fig. 2a, Supplementary Data 2).
We adopted Pearson’s correlation coefficient (PCC) and structural
similarity index measure (SSIM) to assess the similarity between the
predicted and true cell type compositions, and used root mean

square deviation (RMSE) and Jensen-Shannon divergence (JSD) to
assess the error of each method. Spoint yielded the highest average
PCC/SSIM values (= 0.73/0.69), and the lowest average RMSE/JSD
values (=0.05/0.41) among the 11 deconvolution methods (Fig. 2a).
Additionally, we applied the accuracy score (AS) defined in the
benchmark study to evaluate the performance of each method: the
average AS of Spoint ( = 0.93) was obviously higher than that of the
other methods (AS = 0.24–0.82; Fig. 2b).

To evaluate Spoint’s performance in cell type deconvolution on
real ST experimental data, we used two datasets as input: a 10X Visium
dataset for the human dorsolateral prefrontal cortex (DLPFC) that
contains 12 ST slices34 and a human brain scRNA-seq dataset down-
loaded from the Allen Brain Map51. As there is no experimental evi-
dence for the cell type composition of each spot in this dataset, we
took the cortical layers annotated by the original studies as ground
truth (Fig. 2c, Supplementary Fig. 3a–c). As one example,we found that
the distribution of excitatory L3/4 neurons predicted by Spoint had a
higher AS value (= 0.85) than the other examined deconvolution
methods (AS =0.29–0.64; Fig. 2c). Collectively, for all 56 cell types52,53

in all 12 ST slices, the average AS of Spoint ( = 0.60) was again higher
than those of the other methods (average AS =0.30–0.48; Fig. 2d).
Furthermore, we calculated the significance (using the Wilcoxon Rank
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Sum test) of any difference in the proportion of one cell type between
the layers, with a lower P-value representing increased deconvolution
accuracy29. We found that the average P-value of Spoint ( = 0.01) was
lower than that of the other methods (average P-values = 0.05–0.64;
Supplementary Fig. 3d).

To further evaluate Spoint’s performance in real ST datasets, we
collected three single-cell resolution ST datasets: Chen et al. mouse
embryo brain (Stereo-seq)4, Chen et al. mouse brain (Stereo-seq)4

and Fang et al. human brain (MERFISH with 4000 genes)49 to simu-
late spot-level ST data with known cell-type composition and spatial
context. We also obtained the corresponding scRNA-seq data from
the same tissue types as reference. Using these data, we aggregated
approximately 10 cells into each pseudo spot, creating three distinct
spot-level ST datasets (Supplementary Fig. 4a). As an example, we
observed that Spoint achieved the highest PCC compare to other

cell type deconvolution methods for forebrain glutamatergic neu-
roblast in dataset 1 (Supplementary Fig. 4b). We then evaluated the
deconvolution performance of the Spoint module on all cell types
across the three datasets using four evaluation metrics. Our findings
demonstrate that Spoint consistently outperformed existing meth-
ods, achieving the highest accuracy scores in all three datasets
(Supplementary Fig. 4c, d). In addition, we evaluated the relative
error between the summed predicted cell type proportions and the
ground truth, and found that SpatialDWLS (with rankings of 1, 2, and
3) and Spoint (with rankings of 4, 3, and 1) registered the lowest
average relative error across the three datasets (Supplementary
Fig. 4e). These results provide strong evidence of the Spoint mod-
ule’s superior performance over other methods, and an accurate
deconvolution result will facilitate subsequent identification of
spatial domains using Splane.
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Fig. 2 | Cell type deconvolution of spots using Spoint and other deconvolution
methods. a Average PCC, SSIM, RMSE, and JSD values of the deconvolution
methods for 32 simulated datasets from the benchmark study50; PCC, pearson’s
correlation coefficient; SSIM, structural similarity indexmeasure; RMSE, rootmean
square error; JSD, Jensen-Shannondivergence; center line,median value; box limits,
upper and lower quartiles; whiskers, 1.5× interquartile range; n = 32 datasets.
b Accuracy scores of the deconvolution methods for the 32 simulated datasets.

Center line, median value; box limits, upper and lower quartiles; whiskers, 1.5×
interquartile range; n = 32 datasets. c Spatial distributions of excitatory layer 3/4
RORB+RPS3P6+ neurons predicted by the deconvolution methods for the DLPFC
dataset. d Accuracy scores of the deconvolution methods for the DLPFC dataset.
Bar height, mean value; whiskers, mean values ± 95% confidence intervals; n = 56
cell types. Source data are provided as a Source Data file.
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Splane identifies spatial domains for multiple slices
After cell types were deconvoluted with Spoint, we applied Splane to
identify the spatial domains of the aforementioned ST slices of the
DLPFC dataset (Supplementary Fig. 5). We used the original study’s
manual annotation of cortical layers as the ground truth34, and used
three metrics to evaluate the prediction performance. Specifically, we
used the Jaccard index (JI) and Adjusted Rand Index (ARI) between a
spatial domain identified by Splane and the corresponding cortical
layer from the ground truth to assess the accuracy of the method, and
computed the shifting distance (SD) between the prediction and the
ground truth to quantify the error of Splane (seeMethods). A higher JI/
ARI value or a lower SD value indicates that the prediction is closer to
the ground truth.

First, we compared the results obtained by processing all slices
jointly (joint analysis, by default) to those obtained by processing each
slice individually (single analysis). To enable this comparison, we built
a test version of Splane, namely, Splane-single, that constructs a GCN
model for each slice individually. Taking slices 151508, 151510, 151670,
and 151673 from the DLPFC dataset as examples, the JI values obtained
by the joint analysis were higher than those obtained by the single
analysis, and the SD values obtained by the joint analysis were lower
than those obtained by the single analysis (Fig. 3a, b). Moreover, upon
processing the entire 12 slices dataset, the average JI/median ARI
values by joint analysis were 0.61/0.61, higher than that by the single
analysis ( = 0.53/0.57; Fig. 3c, d); the average SD value by the joint
analysis was 50 μm, much lower than that by the single analysis
( = 262μm; Fig. 3e). This comparison implies that the joint analysis
scheme improves the accuracy of Splane for spatial identification.

We then compared the performanceof Splane against other state-
of-the-art spatial-domain-identification methods, including methods
designed for analyzing multiple ST slices such as STAligner, PRECAST
and STACI, aswell asmethods that are designed for analyzing single ST
slice such as STAGATE, SpaGCN, BayesSpace, and stLearn, using the
same evaluation criteria (Supplementary Data 2). In analyzing all 12 ST
slices of the DLPFC dataset, Splane exhibited the highest accuracy
(average JI/median ARI = 0.61/0.61) and the lowest error (average
SD= 53μm), while other tools had JI/ARI and SD ranges of 0.41–0.56/
0.36–0.54 and 75–548μm (Fig. 3a–e, Supplementary Fig. 6). Thus,
Splane outperforms available alternative methods for spatial domain
identification.

Spatial expression variation of genes can reflect the states, com-
munications, and dynamics of cells, and therefore accurate identifi-
cation of spatial variable genes (SVGs) from ST slices is crucial for
determining the functions and phenotypes of cells in spatial domains.
We thereby compared these methods for the task of identifying SVGs
that represent specific cortical layers.We adopted the SVGs for cortical
layers 1 ~ 6 and white matter (WM) annotated by the original study34 as
the ground truth, and evaluated the performance of each method by
computing the overlap between the identified SVGs and the ground
truth. Using a fold-change >0.5 and a P-value < 0.01 as cut-offs for
SVGs, we found that tools designed for analyzing multiple ST slices
identifiedmore SVGs compared to those designed for analyzing single
ST slice. Splane, PRECAST, STAligner and STACI identified 1714, 1671,
1669 and 1527out of 1917 SVGsof cortical layers 1 ~ 6 andWM,while the
other examined methods identified only 179 ~ 1336 SVGs for each slice
when the same cut-offs were applied (Fig. 3f). Similarly, using the
receiver operating characteristic (ROC) curves as indicators for SVG
prediction accuracy, we found that Splane, PRECAST and STAligner
yielded the highest area under the curve value (AUC=0.90, 0.89 and
0.88 respectively) among all examinedmethods (AUCs <0.83; Fig. 3g).
These results emphasize the power of the Splane’s joint analysis
scheme for identifying SVGs from multiple ST slices.

To assess the importance of the Spoint module in facilitating
accurate spatial-domain identification using the Splane module, we
conducted two comparative analyses on the human DFPLC datasets.

First, we compared the performance of Splane using three different
input types: highly variable gene expression matrix, PCA reduction of
highly variable gene expression matrix, and cell-type proportions
predicted by Spoint. Results showed that using only the cell-type
proportion predicted by Spoint as input yielded spatial-domain iden-
tification results that closely resembled the ground truth, with sig-
nificantly higher JI values in all 12 slices compared to the other input
types (Supplementary Fig. 7). Second, we evaluated the performance
of Splane using cell-type deconvolution results from othermethods as
input. Results demonstrated that using the cell-type proportions pre-
dicted by Spoint yielded the best spatial-domain identification out-
come (Supplementary Fig. 8). Notably, the identification of Layer4 was
only possible when using the cell-type proportions predicted from
Spoint as input.

Splane identifies spatial domains from cancer slices
To test the performance of Splane in identifying spatial domains from
disease slices, we applied Splane to jointly analyze 11 breast cancer 10X
Visium slices from three experimental batches, including six slices
reported in ref. 35, four slices released by 10X Genomics54, and one
slice from the study conducted in ref. 30. We first performed cell type
deconvolution in each slice using Spoint and obtained the cell type
identification (based on the expression of selected marker genes) and
composition of each spot (Supplementary Fig. 9).

Subsequently, we applied Splane and identified ten spatial
domains across the 11 slices (Fig. 4a). Notably, the extent of the batch
effect between slices from different experiments was significantly
reduced in Splane compared to thatof the rawdata andSplanewithout
adversarial learning (Supplementary Fig. 10).We then explored the cell
type composition of each predicted spatial domain and annotated
these domains accordingly: domains D0-3, D4–6 and D7–9 were
defined as tumor (tumor cell-enriched), intermediate (mixed cell
types) and immune (immune cell-enriched) domains, respectively
(Supplementary Fig. 11a–d, Supplementary Data 3).

We then applied twodistinct approaches to assess the accuracy of
the Splane predictions for the tumor and immune domains. Since
tumor cells in breast cancer patients often bear chromosomal copy
number variations (CNVs)—including chromosome 1q and 8q gains
and/or chromosome 1p losses55,56 —our first approach was to calculate
the CNVs of each ST spot and check for enrichment of CNVs in the
predicted tumor domains. Using inferCNV57, we calculated the CNVs
for all spots in all 11 ST slices from the expressionmatrix of the ST data.
Taking slice 11 as an example, the four tumor domains predicted by
Splane had copy number gains in chromosomes 1q and 8q (inferred
CNV ≥0.2) as well as copy number losses for chromosome 1p (inferred
CNV ≤ −0.2; Fig. 4b, c). In contrast, fewer or no copy number gains or
losses were detected in the Splane-predicted intermediate or immune
domains (inferred CNV= −0.2 ~ 0.2). Taking all 11 slices into account by
the average CNV values, we also observed chromosome 1q and 8q
gains (average CNV>0.2) and chromosome 1p losses (average CNV<
−0.2) in tumor domains, but less in intermediate and none in immune
domains (Fig. 4d, e).

Our second approach was to calculate the percentage of experi-
mentally annotated immune spots and check for enrichment of
immune spots in spatial domains. We took the H&E-staining-marked
lymphocyte-enriched spots in slice S1, S2, S5, and S6 from ref. 35 and
the CD3+ immunofluorescence(IF)-marked T cell-enriched spots in
slice S10 from ref. 30 as the ground truth for immune spots. We then
calculated the percentage of immune spots in each of the Splane
identified domains. We found higher percentages of H&E-staining-
marked immune spots in immune domains D9, D8, and D7 in slice S1,
S2, S5, and S6 (44%, 8%, and 6%, respectively) than in the intermediate
and tumor domains ( < 1%) (Fig. 4f, g). Similarly, in slice S10, we found
more CD3+ IF-marked immune spots in immune domains D9, D8, and
D7 (72%, 70%, and 63% respectively) than in intermediate and tumor
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Fig. 3 | Identification of spatial domains from 12 10X Visium slices of DLPFC.
a Comparison of spatial domains identified by Splane, STAligner, PRECAST, and
STACI for slice 151508, 151510, 151670, and 151673. Layer1~Layer6, cortical layer 1 ~ 6;
WM, white matter; JI, Jaccard index; SD, shifting distance. b Spatial domains iden-
tified by Splane-single, STAGATE, SpaGCN, BayerSpace, and stLearn for the four
slices. c–e Jaccard indexes (c), Adjusted Rand Indexes (d), and shifting distances (e)
between cortical layers and corresponding spatial domains identified by Splane,
STAligner, PRECAST, STACI, Splane-single, STAGATE, SpaGCN, BayesSpace, and
stLearn. The gray background represents for the methods for multiple slice ana-
lysis. Center line, median value; bar height,mean value; box limits, upper and lower

quartiles; whiskers, 1.5× interquartile range for box plots, mean values ± 95% con-
fidence intervals for bar plots; n = 12 slices. f Proportion of SVGs identified by the
spatial-domain-identification methods when using fold-change > 0.5 and P-value <
0.01 (two-sided Wilcoxon rank-sum test) as cut-offs. The gray background repre-
sents themethods used for multiple slice analysis. SVGs, spatial variable genes; bar
height, mean value; whiskers, mean values ± 95% confidence intervals; n = 5 meth-
ods for single analysis. g Receiver operating characteristic (ROC) curves of SVGs
identified by Splane, STAligner, PRECAST, STACI, Splane-single, STAGATE,
SpaGCN, BayesSpace, and stLearn. Whiskers, standard errors; n = 12 slices. Source
data are provided as a Source Data file.
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domains ( < 47%) (Fig. 4h, i). These results support Splane’s prediction
of tumor and immune domains.

In the context of tumor systems, accurately identifying tumor
boundaries is crucial for immuno-oncology research. We compared
the ability of Splane and other multi-slice analysis algorithms, includ-
ing STAligner, PRECAST, and STACI, to identify tumor boundaries. In
the human breast cancer 10X Visium data, only Splane accurately

identified tumor regions with distinct boundaries (Supplementary
Fig. 12a). The tumor regions predicted by Splane were consistent with
CNV gains or losses in specific chromosomes, and they aligned well
with evident tumor tissue regions in H&E images. Furthermore, we
observed a significant correlation between the proportion of tumor
cells and CNV scores specifically in the spatial domains identified by
Splane (Supplementary Fig. 12b). These results highlight Splane’s
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ability to identify consistent tumor regions and boundaries across
multiple slices in tumor systems.

Scube constructs 3D architecture of tissue from consecutive
2D slices
Most current experimental ST techniques measure the distribution of
transcripts in 2D space, yet tissues are obviously 3D, and functions of
cells are distributed in space.We thereby developed the Scubemodule
of SPACEL to construct and investigate the 3D architecture of a given
tissue. We first employed a 3D STARmap dataset of the mouse brain
from ref. 58 (originally 1400μm× 1700μm× 100μm) and divided it
into ten slices of 10μmthickness each as the ground truth (Fig. 5a).We
randomly rotated, flipped, and cropped each slice to simulate a per-
turbed ST dataset comprising consecutive 2D slices (Fig. 5b, see
Methods). We defined the percentage of a slice that was randomly
cropped out as the crop ratio of that slice. At each level of crop ratio,
we used Splane to identify the spatial domains across the ten slices,
and applied Scube to align these slices by transforming their coordi-
nate systems based on the Splane-identified spatial domains.

We adopted SSIM and PCC as the metrics to assess the similarity
between the transformed coordinate system and the ground truth for
each slice. Higher SSIM and PCC values indicate better alignment.
Recall that STAligner and PASTE are two state-of-the-art methods for
constructing 3D alignments of tissue fromconsecutive ST slices40,41, we
compared the performance of Scube with STAligner and PASTE for
aligning the simulated dataset under crop ratios from 0 to 0.25. Since
the alignment results of STAligner and PASTE can be affected by their
hyperparameters, we first performed a parameter optimization search
to achieve the best alignment results of STAligner and PASTE (Sup-
plementary Fig. 13), before it was compared with Scube. With a crop
ratio equal to 0.25, the average SSIM/PCC values of the Scube-
transformed slices were 0.96/0.97, whereas the values for the
STAligner-transformed slices were 0.76/0.77 and for the PASTE-
transformed slices were 0.72/0.75. (Fig. 5c). With crop ratios range =
0.10, 0.15, 0.20, and 0.25, the average SSIM values of the Scube-
transformed slices were 0.98, 0.98, 0.97 and 0.96, higher than those
by STAligner ( = 0.79, 0.79, 0.72, and 0.76) or PASTE ( = 0.82, 0.77,
0.74, and 0.72; Fig. 5d). Similarly, the average PCC values of the Scube-
transformed slices were 0.99, 0.98, 0.98, and 0.97, which were also
higher than those by STAligner ( = 0.80, 0.81, 0.73, and 0.77) or PASTE
( = 0.85, 0.79, 0.76, and 0.75; Fig. 5d), suggesting a better alignment in
Scube for the simulated dataset.

To further compare the performance of Scube, STAligner and
PASTE in constructing a 3D architecture on real ST dataset, we
examined a mouse primary motor cortex (MOp) profile, which
contains 33 consecutive 2D slices from the MERFISH experiment13.
We first applied Splane and identified seven spatial domains from
the 33 consecutive 2D slices, which exhibited the highest accuracy in
spatial domain identification (average JI/median ARI = 0.44/0.43)
compared to STACI (average JI/median ARI = 0.43/0.38), STAligner
(average JI/median ARI = 0.33/0.25) and PRECAST (average JI/med-
ian ARI = 0.23/0.16; Supplementary Fig. 14). We then used Scube to
align these slices by transforming the coordinate systems of each
pair of adjacent slices (Supplementary Fig. 15a, b). Next, by stacking
the transformed 2D slices together, we constructed a 3D archi-
tecture of MOp in Scube, enabling a 3D illustration of spatial
domains and cell types (Fig. 5e).

In parallel, we applied STAligner and PASTE to perform an align-
ment and 3D construction from the same dataset (Supplementary
Fig. 15). Since no ground truth is known in this case, we calculated the
SSIM/PCC values between every two adjacent transformed slices to
evaluate the alignment performance of the two methods, and found
that the average SSIM/PCC values of the Scube-transformed slices
were 0.71/0.76, significantly higher than those by STAligner (SSIM/
PCC =0.61/0.65) or PASTE (SSIM/PCC =0.57/0.61; Fig. 5f). Notably,

when stacking the 2D transformed slices using either STAligner or
PASTE, we obtained a twisted 3D architecture of MOp (Fig. 5e).

SPACEL also integrated a Gaussian process regression (GPR)
model5,59 in Scube, which predicts the expression level of a gene at any
position in the 3D architecture, enabling a continuous illustration of
transcript distribution along any direction in space (Fig. 5g, Supple-
mentary Fig. 16a, b). By quantifying the Bayes Factor (BF, seeMethods)
of the GPR model, SPACEL is capable of identifying genes that vary
significantly in any direction within the 3D space of tissue (Fig. 5h).
SPACEL thereby allows users to explore the dynamics of transcript
distributions from any direction, and hence reveals a real 3D structure
of the spatial architecture of complex tissues or organs.

Accurate reconstruction of detailed 3D structures is crucial for
unraveling biological phenomena in spatial omics data. In the mouse
embryo Stereo-seq data4, Scube achieved better performance com-
pared to STAligner and PASTE in accurately reconstructing and
depicting structures like brain, liver and paws (Supplementary Fig. 17a,
b). Furthermore, Scube (SSIM/PCC=0.62/0.66) exhibited higher con-
sistency in the distribution of tissue regions between slices compared
to STAligner (0.57/0.61) and PASTE (0.24/0.25) (Supplementary
Fig. 17c). In summary, the Scube module of SPACEL outperformed
STAligner and PASTE in alignment and 3D architecture construction in
both the simulated (STARmap) and real (MERFISH and Stereo-seq)
datasets.

SPACEL as an integrated toolkit for ST data processing and
analysis
To highlight the integrated nature of SPACEL, we applied a fully inte-
grated workflow to analyze mouse whole brain ST data60. The dataset
consisted of 75 consecutive slices generated by Spatial Tran-
scriptomics technology1 with a spot resolution of 100μm, covering a
large portion of themouse brain region. Using the original brain region
annotations as the reference ground truth, we evaluated the perfor-
mance of each module. In Spoint, the predicted distribution of major
region-specific cell types matched well with the corresponding brain
regions, such as excitatory neurons and hippocampus CA1 and CA3
cells predominantly predicted in the hippocampal region (Supple-
mentary Fig. 18a, b). In Splane, we compared its performance against
STAligner, PRECAST and STACI. The average JI/median ARI values of
the spatial domains identified by Splane (0.42/0.56) were higher than
those identified by STAligner (0.36/0.40), PRECAST (0.35/0.38) and
STACI (0.31/0.40) across the 75 slices (Supplementary Fig. 18c, d). In
Scube, the 3D tissue reconstruction achieved by Scube (SSIM/PCC =
0.83/0.85) exhibited high coherence and accuracy, surpassing the
results obtained by PASTE (0.82/0.84) and STAligner (0.79/0.81)
(Supplementary Fig. 18e, f). These results clearly demonstrate that
SPACEL serves as an effective integrated toolkit for analyzing multiple
ST slices.

Discussion
In this study, we introduced a deep learning-based toolkit, SPACEL,
comprising three modules: Spoint for cell type deconvolution, Splane
for the identification of spatial domains across multiple ST slices, and
Scube for the construction of 3D architecture from consecutive ST
slices. We have demonstrated that the SPACEL modules outperform
state-of-the-art methods for each of these tasks through analyses of
32 simulated and 11 real ST datasets acquired using five distinct ST
technologies. While each module can be utilized separately, their
synergistic interplay within the SPACEL platform offers an all-
encompassing and streamlined solution for the best results of ST
data interpretation, particularly accurate 3D tissue alignment, precise
spatial domain identification, and effective batch effect removal.

Unlike the other state-of-the-art methods, the Splane module of
SPACEL combines the cell type composition as input and adversarial
training in theGCNmodel. Since the spatial distribution of genes, cells,
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Fig. 5 | 3D alignments of consecutive ST slices for the mouse brain. a The 3D
STARmap dataset of the mouse brain. b Simulating an ST dataset with consecutive
2D slices by dividing the 3D STARmap dataset into ten 2D slices and randomly
rotating/flipping/cropping each slice. c Alignment of the simulated dataset with
crop ratio=0.25, generated by Scube, STAligner, and PASTE. Dashed lines represent
the positions of the ground truths. SSIM, structural similarity index measure; PCC,
Pearson’s correlation coefficient. d SSIM/PCC values of Scube’s, STAligner’s, and
PASTE’s results for simulated datasets with crop ratios from 0 to 0.25. Center line,
median value; box limits, upper and lower quartiles; whiskers, 1.5× interquartile
range; n = 10 slices. e Stacked 3D alignments constructed by Scube (left), STAligner

(middle), and PASTE (right) from 33 MERFISH slices of mouse primary motor cor-
tex. f SSIM/PCC values of Scube’s, STAligner’s, and PASTE’s alignment results for
the MERFISH dataset. Center line, median value; box limits, upper and lower
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Source Data file.
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and cell clusters from distinct ST experiments can be extremely het-
erogeneous, using cell type composition as input and introducing
adversarial training to the GCN model significantly minimizes batch
effects, leading to a more robust and efficient method for spatial
domain identification. The joint analysis scheme that Splane incorpo-
rated is also particularly powerful to identify common features, and
hence to accurately predict SVGs across multiple slices.

Spatial domains identified in Splane also set a foundation for
Scube to achieve an accurate alignment of the consecutive slices and
hence a precise 3D architecture construction. In contrast, the PASTE
algorithmuses the raw expressionmatrix and spatial coordinates from
the ST data as input for alignment, and a hyperparameter α to adjust
the relative contributions of transcriptional dissimilarity and spatial
distances among the aligned spots. This design makes PASTE’s align-
ment results sensitive to hyperparameters in datasets with significant
defects (e.g., slices with crop ratios ≥0.25). On the other hand, STA-
ligner constructs MNN based on the raw expression matrix to select
landmark spots/cells and relies on user-defined landmark domains
shared across slices for alignment. However, this approach does not
utilize complete information on each spot of the whole slice, which
limits its ability to balance global structure similarity and alignment
accuracy, particularly in the case of partially overlapped slices. In
contrast, Scube adopts a global optimization strategy for 3D align-
ment, taking into account the correspondences between all spots in
adjacent slices. This innovativemethod enables Scube to achievemore
precise alignment, preserving the overall structural integrity in the
process of spatial alignment.

To enhance the accessibility of the GPR model for 3D spatial
transcriptomics, we have developed a user-friendly Python code by
integrating the original MATLAB code and third-party GUI software.
This integration enables researchers to easily access and utilize the
model, fostering advancements in the field and promoting broader
adoption of this technologywithin the scientific community. There are
opportunities to improve the performance of SPACEL and extend its
application. For example, Splane uses cell type composition informa-
tion as input for the model; this means that to process seq-based ST
datasets such as 10X Visium, one has to employ a cell type deconvo-
lution algorithm such as Spoint to obtain the cell type composition
information before Splane can be applied. Besides, the current version
of Scube does not support nonlinear alignment as well as STAligner
and PASTE. Although there are several tools that can nonlinearly align
image data by setting anchor points manually, to our knowledge there
is no method yet to do it automatically for ST data analysis. We
acknowledge this limitation and plan to address this issue in a future
version of Scube. Another issue for SPACEL is that when a new slice is
added to the dataset, the entire deep learning model needs to be
retrained from scratch, which may affect the computational efficiency
of SPACEL to analyze large-scale datasets. We anticipate that transfer
learning models and algorithms (e.g., ImageNet61 and BERT62), which
have been used in bioinformatics tasks such as cell type classification
for large-scale single-cell data63–66, can help us to overcome this
limitation.

Methods
Construction of simulated ST data from scRNA-seq data
Toestablish training sets for Spoint andother deconvolutionmethods,
we employed cells from a scRNA-seq dataset to simulate pseudo-spots,
where the cell type composition of each pseudo-spot can be ascer-
tained from its constituent cells. Specifically, assuming that the num-
ber of cells at each spot (Nc) follows a normal distribution Nðμc,δcÞ,
and the number of cell types at each spot (Nt) follows a normal dis-
tribution Nðμt ,δtÞ, we set the default parameters as
μc = 10,δc = 5,μt =μc=2,δt = δc=2. Researchers can also detect Nc from
the image of an ST slice using stardist67 or DeepCell68, and use it as the
input parameter. We first generated Nt for each sampled spot, and

then sampled cells from the scRNA-seq data associatedwith each spot.
Each cell was sampled based on its sampling probability which is
determined by Pt . Pt for each spot is defined as:

Pt =

f t if 0< rc <
1
3

1=f tP
t

1=f tð Þ if
1
3 ≤ rc<

2
3ffiffiffi

f t
pP

t

ffiffiffi
f t
p� � if 2

3 ≤ rc<1

8>>>>>><>>>>>>:
ð1Þ

where f t is the composition of each cell type in the scRNA-seq data,
and rc is a random value between 0 and 1. We then randomly sampled
cells of each cell type from the scRNA-seqdata, and combined the gene
expression ofNc sampled cells to generate an original spot. During the
cell sampling process, we calculated the cell type numbers of these
sampled cells. These cell type numbers serve as the cell type labels for
the spot. We then estimated themean value μL and standard deviation
σL of gene expression for each spot from a real ST data, and down-
sampled the original spot using the downsampleMatrix function of the
Scuttle package69 to obtain a simulated spot that has gene expression
distribution similar to that of the real ST data.

Deconvolution model of Spoint
Spoint contains three deep learning models. The first model is a var-
iational autoencoder (VAE) model, consisting of an encoder layer, a
decoder layer, and three hidden layers. The three hidden layers con-
tain 128, 64, and 128 nodes, respectively. The input variables of the
encoder and decoder layers are gene expression levels at each spot, x

*
,

so the dimension of these two layers is equal to the number of
detected genes. We inputted the expression matrices of the simulated
ST data fx* 0g and the real ST data fx*g into the VAEmodel, and used the
latent variables of themiddle hidden layer as the output results, z

* 0 and
z
*
. Note that the simulated ST dataset should be constructed from a

single-cell dataset obtained from the same type of tissue as the real ST
dataset.

The second model E consists of an input layer that accepts the
latent variable z

*
of the VAE model, three hidden layers each con-

taining 512 nodes with ReLU activation function70, and a output layer
that outputs the proportion of each cell type in the spot with Soft-
max activation function. We adopted the maximum mean dis-
crepancy (MMD) distance between the variable of model E’s last
hidden layer for the simulated ST data and the real ST data as the
objective function, as

LossM =MMD2�E2

�
z
* �

, E2

�
z
*0�� ð2Þ

MMD2 U,Vð Þ= 1
n2

Xn
i

Xn
i0

k ui,u
0
i

� �� 2
nm

Xn
i

Xm
j

k ui, vi
� �

+
1
m2

Xm
j

Xm
j0

k vi, v
0
i

� � ð3Þ

k u, vð Þ= e� u�vj j2
σ ð4Þ

where z
*0 and z

*
are the latent variables of the simulated ST data and

real ST data, respectively, generated by the VAE model, and σ repre-
sents the dimension of the hidden layer. The third model R consists of
an input layer that accepts the output of model E, three hidden layers
each containing 512 nodes with ReLU activation function70, and a
output layer is represents the recovery of latent variable z

*
of the VAE

model. Then, we used the following objective function to constrain the
outputs of the model E and the ground truth cell-type proportion of
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simulated ST data:

LossE =Cosine E z
*
� �

, p
*

� �
+cKL E z

*
� �

, p
*

� �
ð5Þ

and constrain the similarity between the outputs of the model D and
the latent variable z

*
of the simulated ST data and the real ST dataset:

LossR =Cosine R E z
*
� �h i

, z
*

� �
+cKL R E z

*
� �h i

, z
*

� �
ð6Þ

Cosine a,a0ð Þ=
P

a×a0ffiffiffiffiffiffiffiffiffiffiffiP
a2

p
×

ffiffiffiffiffiffiffiffiffiffiffiffiP
a02

q ð7Þ

KL a,a0ð Þ=
X

a× log
a
a0

Min
a

Cosine a,a0ð Þ+KL a,a0ð Þ ð8Þ

where p
*
is the ground truth cell-type proportion of simulated ST data,

theR½Eðz*Þ� is the outputs ofmodelR for the real and simulated STdata,
KLða,a0Þ is the Kullback-Leibler Divergence71.

The weight of the model is initialized using the He initialization
method72. The training of Spoint contains the following steps: 1) We
calculated LossE using Eðz*Þ predicted from the simulated ST data and
ground truth cell-type proportion p

*
, then adopted the Adam optimi-

zation algorithm73 to obtain optimal parameters for model E. 2) We
calculated LossR using R½Eðz*Þ� from the real and simulated ST data and
latent variable z

*
, and LossM using E2ðz

*Þ and E2ðz
*0Þ from the variable of

model E’s last hidden layer for the simulated ST data and the real ST
data, then updated the parameters of model R and model E using the
Adam optimization algorithm. 3) We repeated steps 1) and 2) itera-
tively to update the parameters of models E and R until the LossE of
two adjacent training epochs reached a convergence value, i.e.,
ΔLossQ<0:001. After the training of Spoint, the values Eðz*Þ at the final
convergence epoch were used to predict the cell type composition of
the real spatial data.

Graph convolutional network of Splane
In Splane, we first used the spatial coordinates of spots/cells as inputs
to construct an undirected graph. In the graph, each node represents a
spot/cell, and an edge connects two spots/cells that are physically
adjacent in space. The graph structure is stored in an N ×N adjacency
matrixA, in whichN is the number of spots/cells, andAuv = 1 if spot/cell
v belongs to the k nearest neighbors of spot/cell u, otherwise Auv =0.
For single-cell resolution ST data, such as MERFISH and STARmap, we
set the default value of k = 25; but for 10X Visium data, we set the
default value of k = 6, since each spot in the 10X Visium data is sur-
rounded by 6 spots, and approximately 50–100 cells are contained in
the 6 neighbor spots when k = 6.

Then, we used the cell type composition of spots/cells Q and the
adjacency matrix A to construct a graph convolutional network (GCN)
model H, as

Hl + 1 Qð Þ= f Hl Qð Þ,A
� � ð9Þ

where l is the index of the layer, so H0 is the input layer. We used the
cell type composition of each spot/cell as the input layer for this
model. According to Kipf andWelling’s study45, the propagation rule in
GCN can be written as

f Hl ,A
� �

=ReLU bD�1
2ÂbD�1

2HlWl

� �
ð10Þ

Â=A+ I ð11Þ

where I is an identitymatrix, D̂ is the diagonalmatrix ofA, andWl is the
weightmatrix of the lth layer.Weused aChebyshev polynomialfilter to
estimate the convolution kernel of the GCNmodel74. In this process, a
signal x is filtered by gθ as

y= gθ Lð Þx = gθ UΛUT
� �

x =Ugθ Λð ÞUTx ð12Þ

where Laplacian matrix L of the graph is given by L= I � D�
1
2AD�

1
2. The

Laplacian matrix L is real symmetric positive semidefinite matrix. It
possesses a complete set of orthonormal eigenvectors fulgn�1l =0 2 Rn,
which are referred to as the graph Fourier modes. These eigenvectors
are associated with ordered real nonnegative eigenvalues fλlgn�1l =0, and
they correspond to the frequencies of the graph. The Fourier basis
U = u0,:::,un�1

	 
 2 Rn ×n diagonalizes the Laplacian matrix L, such that
L=UΛUT , where Λ=diag λ0,:::,λn�1

	 
� � 2 Rn ×n.
The Chebyshev polynomial filter can be expressed as

gθ Λð Þ=
XK�1
k =0

θkTk
eΛ� �

ð13Þ

where the parameter θ 2 RK is a vector of Chebyshev coefficients and

TkðeΛÞ 2 Rn×n is the Chebyshev polynomial of order k evaluated ateΛ=2Λ=λmax � I, a diagonal matrix of scaled eigenvalues that lie in
½�1, 1�. Consequently, the filtering operation can be written as

y= gθðLÞx =
PK�1

k =0 θkTkðeLÞx, where TkðeLÞ 2 Rn×n is the Chebyshev

polynomial of order k evaluated at the scaled LaplacianeL=2L=λmax � I.

Denoting �xk =TkðeLÞx 2 Rn, we can use the recurrence relation to

compute �xk =2eL�xk�1 � �xk�2 iteratively with �x0 = x and �x1 =eLx as the
initial values. The order of the polynomial K , controls the receptive
field of the convolution kernel and is related to the parameter K in the
Chebyshev polynomial Tk . We set the default K equal to 2 to ensure
that the GCN model contains the information of the first order
neighbors and secondorder neighbors (i.e., neighborsof neighbors) of
each spot.

The GCN model of Splane consists of 5 layers, i.e. H0 ∼H4, where
the first layer H0 and the last layer H4 both contain the cell type
composition of each spot/cell, and the middle layer H2 is used to
cluster spots/cells and identify spatial domains. In Splane we embed-
ded a cosine function LossC to minimize the difference between H0

and H4, i.e.

LossC =Cosine H0 Qð Þ,H4 Qð Þ	 
 ð14Þ

and we used another objective function LossS to minimize the differ-
ence between the H2 values of a spot and its neighbors, as

LossS = H2 qi
� �� 1

n

X
H2 qneighi

� ����� ���� ð15Þ

where qi and qneighi are the cell type composition of spot/cell i and its
neighbors respectively, and n is the number of neighbors.

Adversarial learning for multiple slices
In Splane, we used a discriminator model D containing four layers to
conclude uniform features from multiple slices. The input layer of
model D is the output latent variables of spot/cell i frommodel H, i.e.,
H2ðqiÞ; the output layer contains the probability pi,s of spot/cell i
belonging to slice s; and the two hidden layers are 64 nodes fully-
connect layers. We defined the objective function of model D as

LossD =
1
Ns

X
s

yi,s log pi,s

� �
ð16Þ
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where Ns is the number of slices and yi,s is the slice label of spot/cell i.
The LossD is minimized when the embeddings for different sections
aremaximally different, allowing the discriminator to correctly predict
the labels of the slices. As shown in the next section, we trained GCN
model with spots/cells frommultiple ST slices, optimizing it to achieve
a maximum LossD, ensuring that the latent variables of spots/cells
from different slices would have the highest similarity.

Clustering of spots/cells with latent features
The total objective function of Splane is a combination of the objective
function of the GCN model and the objective function of the dis-
criminator D, as

Loss =αCLossC +αSLossS � αDLossD ð17Þ

where αC , αS, and αD are the weights of LossC , LossS, and LossD, and
their default values are 1, 1, and 0.5, respectively. The weight of the
model is initialized using the Xavier initialization method75. We used
the RMSProp optimization algorithm to minimize the total objective
function. Meanwhile, we clustered spots/cells using the output latent
variables (termed shared latent features) of the GCNmodel (i.e.H2ðQÞ)
and the K-mean algorithm, and we evaluated the clarity of the
clustering result using theDavies-Bouldin score (DBS) implementedby
scikit-learn package76,77. We trained the entire model until both Loss
and DBS within two adjacent training epochs reached convergent
values, i.e., ΔLoss<0:0001 and ΔDBS<0. After the model converged,
we adopted the spot/cell clusters obtained by Splane in the last epoch
as spatial domains. As the shared latent features of the GCN model
contain gene expression and spatial coordinate information of cells/
spots, each spatial domain represents a batch of cells/spots that have
common ground in both the transcriptome and space.

Alignment of consecutive ST slices using Scube
In Scube, we first built a nearest neighbor graph between the cells/
spots of two adjacent slices based on the coordinate of spots. As an
initialization step for optimization algorithms, Scube aligns all slices by
translating them so that their center points coincide with the coordi-
nates ð0,0Þ. Then,we used the spatial domain information for eachpair
of nearest neighbor spots to construct an alignment objective function
of two adjacent slices. We employed a differential evolution optimi-
zation to search for the optimal translation vectors and rotation
angles, and transformed the coordinates of every slice accordingly.
During each iterationof the global optimizationprocess, Scube utilizes
the adjusted coordinate information of spots to identify the nearest
neighborsbetween twoadjacent slices. By adjusting the coordinates of
spots in the source slice, Scube aims to align the source slice to the
target slice, ultimately maximizing the alignment objective function
value. Finally, in Scube we performed all of the aforementioned steps
for all adjacent slices, and used the transformed coordinates to stack
these slices and construct the 3D alignment of the tissue.

Specifically, we used rigid body transformations (including mir-
roring, rotation, and translation) to transfer a slice j as

S0j =RMSj +T ð18Þ

R =
cosθj � sinθj
sinθj cos θj

 !
ð19Þ

M =
flipj 0

0 1

� �
ð20Þ

T =
Δx1 . . . Δxnj

Δy1 . . . Δynj

 !
ð21Þ

where Sj =
def x1 . . . xnj

y1 . . . ynj

� �
is the coordinate matrix of slice j, S0j is the

coordinate matrix after rigid body transformation, and nj is the num-

ber of spots in slice j; R is the rotationmatrix, θj is the rotation angle of

slice j; M is the mirroring matrix, flipj = � 1 represents the mirror

operation of slice j, elsewise flipj = 1; T is the translation matrix. We
defined Oj as the set of overlapped spots/cells for the transformed
slice j between slice j � 1 and the transformed slice j. This set includes
spots/cells in the transformed slice j whose Euclidean distance to their
kth mutual nearest neighbor spots/cells in slice j � 1 is less than a
maximum distance. By default, the maximum distance defined as
median Euclidean distance to the 2kth nearest neighbor of spots/cells
in slice j � 1. Thenwedefined an alignment objective function (AOF) to
measure the alignment between the transformed slices j and slice j � 1
as follows:

AOF S0j jSj�1
� �

=
def 1

no

X
l0j2Oj

1
m

X
lj�12 l0j
� j�1

k

δ domain lj�1
� �

, domain l0j
� �h i

+ f
no

nj

 !

ð22Þ
where l0j 2 Oj are overlapped spots/cells in transformed slice j; hl0ji

j�1
k

is
a set of spots/cells in slice j � 1 which means the mutual k nearest
neighbors of spot/cell l0j ; m means the elements number in set hl0ji

j�1
k

;
δ x,yð Þ is a Kronecker function. f xð Þ= � x � 1ð Þp is the penalty term;p is
the exponent of the penalty, with a larger p indicates stronger partial
alignment capability; no is the number of overlapped spots/cells in
slice j � 1; nj is the number of all spots/cells in the transformed slice j;
Thenwe adopted the differential evolution algorithm todetermine the
best transformation matrices R,M,Tf g to maximize the AOF value
between two adjacent slices. After determining transformation matri-
ces for all slices, we can stack these transformed slices to construct a
3D alignment of the tissue.

Gaussian progress regression model
We embedded a Gaussian process regression method5,59 in SPACEL to
obtain the continuous 3D distribution of a transcript from Scube
transformed slices. First, we adopted the Alpha shape algorithm78,79 to
generate a 3Dmeshedmanifold fromthe coordinates of the spots/cells
in all slices, and smoothed this manifold using a subdivision
algorithm80.Webuilt a Gaussianprocess (GP)model for the expression
level y jð Þ

i of gene i in each spot/cell j, as

yi
jð Þjx jð Þ = f iðx jð ÞÞ+ ϵ ð23Þ

where xðjÞ is the coordinate of spot/cell j, ε represents Gaussian addi-
tive noise, and the functional form of f ið�Þ is unknown and may vary
between genes, denoted as

f i xð Þ∼GP μ x
*
� �

,Cov x
*
, x
*0

� �h i
ð24Þ

Cov x
*
, x
* 0

� �
=
X
j,j0

δ2 exp �
x jð Þ � x j0ð Þ� �2

2l2

264
375 ð25Þ

where xðjÞ is the coordinate of spot/cell j, μðx*Þ represents the mean
function, Covðx* , x

*0Þ represents the covariance function, and δ and l
are the process-variance and length-scale hyperparameters, respec-
tively. The objective function for training the GPmodel is themarginal
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likelihood,

L yijx,θ
� �

=
Z

P yijf i, x, θ
� �

P f ijx,θ
� �

df i ð26Þ

of gaussian process model. The hyper-parameter θ can be set by
maximizing a posteriori estimation, defined as:

θ*  argθ max
Z

P yijf i, x, θ
� �

P f ijx, θ
� �

P θð Þdf i ð27Þ

We set the initial values of these hyperparameters as μðx*Þ=meanðyiÞ,
δ =4, and l = λ � var yi

� �
, and we used a grid search strategy81 to deter-

mine the value of λ that maximizes the marginal likelihood. Then, we
used the coordinates andgene expression informationof spots/cells in
all slices to train this GP model, and optimized the hyperparameters
μðx*Þ, δ, and l using the Adam algorithm73. Finally, we uniformly sam-
pled 500,000 points in the 3Dmeshedmanifold, and used the trained
GPRmodel to predict the expression level of a gene at each point. The
gene expression information of these points constitutes the distribu-
tion of a transcript in 3D space. Based on the GPR model, we can use
the Bayes Factor (BF) to quantify the spatial variation of a given gene in
3D space5:

BF=
L M1

� �
L M2

� � ð28Þ

where LðM1Þ denotes the marginal likelihood of the optimized GPR
model and LðM2Þ denotes the marginal likelihood of a simplified GPR
model in which l was set to1. Larger BF values denote greater spatial
variation in the gene expression level.

Robustness test of SPACEL
To test the robustness of SPACEL, we evaluated its performance across
various hyperparameters. Each hyperparameter was varied individu-
ally while keeping the other hyperparameter values constant. In
Spoint, we assessed its performance by varying two user-defined
hyperparameters (the number of simulated spots in the training set
and the number of marker genes in each single-cell cluster) and three
model hyperparameters (the dimensions of latent layers, hidden layers
of predicted model, and probability output layers) in real single-cell
resolution ST datasets4,49. In Splane, we compared its performance by
varying five hyperparameters (the dropout rate of the model layers,
the weight of the adversarial loss, the degree of neighbors in the
constructed graph, the dimensions of latent layers, and the dimen-
sions of hidden layers) using human DFPLC data34. In Scube, we tested
its performance by varying the five hyperparameters used in Splane,
one additional hyperparameter (the number of spatial domains), and
two hyperparameters specific to Scube (the number of nearest
neighbors in the MNN graph and the exponent of the penalty for the
overlap ratio between adjacent slices) using 3D STARmap data58 with a
crop rate of 0.25.

Jaccard index and shifting distance
To evaluate the prediction accuracy of the spatial domains identified
by each method, we computed the Jaccard Index (JI) for each spatial
domain with a manually annotated cortical layer. Specifically, we
defined a set Pd that contains all spots in the spatial domain d and a set
Pl that contains all spots in the cortical layer l. We calculated
JI d, lð Þ= Pd\Pl

Pd ∪Pl
between a spatial domain d and all cortical layers, and

defined the cortical layer with the largest JI value as the corresponding
layer of domain d, i.e., layer ld :

ld = argmaxl JI d, lð Þ	 
 ð29Þ

We then used JI d,ld
� �

to measure the prediction accuracy for the
spatial domaind. We calculated the JI values for all spatial domains in a
slice and used the average JI value for these domains to represent the
prediction accuracy for the slice. In addition, for a spatial domain, we
defined the distance fromone of its spots to its corresponding cortical
layer as the shifting distance (SD) of the spot and used the average SD
of all spots in the spatial domain to evaluate the performance of each
method. A lower SD value indicates a better consistency between the
spatial domain and the corresponding cortical layer.

Identification of spatial variable genes
We used two strategies to obtain the ground truth for spatial variable
genes (SVGs). The first strategy was to use the differentially expressed
genes of manually annotated cortical layers as the ground truth. Spe-
cifically, after normalizing the expression matrix of the ST data using
Scanpy, we applied the two-sided Wilcoxon rank-sum test and the
threshold log(fold-change) > 0.5, P-value < 0.01 to obtain differentially
expressed genes (DEGs) for each cortical layer, which we used as the
ground truth for SVGs. We used the same strategy to obtain DEGs for
each spatial domain. Then, we calculated the sensitivity and specificity
of the DEGs of spatial domains obtained by each method, and plotted
receiver operating characteristic curves using the P-value ranking
of DEGs.

ASW of slices from different experimental batches
To assess the performance of Splane in reducing the batch effectwhen
jointly analyzing multiple slices, we calculated the Average Silhouette
Width (ASW) using the equation:

ASW=
1
K

XK
k = 1

1
Ck

XCk

i= 1

1� jSilhouette ið Þj ð30Þ

Silhouette =
XN
i

b ið Þ � a ið Þ
max a ið Þ,b ið Þ	 
 ð31Þ

a ið Þ= 1
ns � 1

Xns

j2s
distance i, jð Þ ð32Þ

b ið Þ=mins0
1

ns0 � 1

Xns0

j2s0
distance i, jð Þ

" #
ð33Þ

where spot/cell i is fromdataset s, spot/cell j is fromdataset s (for a) or
s’ (for b), Ck is the number of cells with the domain/cluster k, K is the
number of domains/clusters, ns is the spot/cell number in dataset s,
and N is the total number of spots/cells in all datasets. We calculated
the Euclidean distance between spots/cells i and j from the raw
expression matrix or from the latent features of spots/cells i and j. We
used the scib82 implementation to compute the ASW scores.

Copy number variation estimated by inferCNV
We employed inferCNV57 to estimate copy number variations (CNVs)
for the breast cancer ST slices. We used the default setting cut-off = 0.1
for inferCNV, i.e., only genes with an average count > 0.1 were con-
sidered. We used spots containing < 10% cancer cells as reference
samples and other spots as malignant samples. To compare the CNV
values inferred from different slices and different experimental bat-
ches, we scaled the inferred CNV values to −1 ~ 1, and we calculated the
average inferred CNV at each genomic locus for all spots in a spatial
domain, to represent the mutation information of the spatial domain.
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Validation of immune domains
Tovalidate thatD3, D5, andD9 are immunedomains, wecalculated the
percentage of overlap (PO) between the experimental annotation of
immune spots and the spatial domains identified by Splane, as

POd =
Plym \ Pd

Pd
ð34Þ

where Plym is the set of immune spots annotated by experiments, and
Pd is the set of spots in domain d. For slices S1, S2, S5, and S6, we used
the H&E staining information from the original study as the experi-
mental annotation of immune spots35. For slice S10, we used the anti-
CD3 immunofluorescence images of the slice to annotate immune
spots30. Specifically, we first used DeepCell68 and DAPI channel
information to filter cells with sizes between 150 and 1000 pixels.
Then, we scaled the CD3 fluorescence intensity of each pixel to 0−1,
and used the average of the scaled CD3 intensity of pixels within a cell
to represent the CD3 intensity of the cell. Cells with CD3 intensity
> 0.37 were defined as CD3+ cells, and spots containing > 30% CD3+

cells were used as experimentally annotated lymphocyte spots.

Metrics for benchmarking deconvolution methods
We employed the fivemetrics from a previous benchmarking study of
deconvolution methods50 to compare the performance of Splane with
other state-of-the-art methods in processing the 32 simulated ST
datasets:

1. Pearson correlation coefficient (PCC):

PCC=
E exi � eui

� �
xi � ui

� �	 

esisi ð35Þ

where xi is the cell type composition of cell type i in the ground truth,
ui is the average cell type composition of cell type i in the ground truth,
σi is the standard deviation of the cell type composition of cell type i in
the ground truth, and exi, eui, and eσi are the corresponding values in the
predicted result. For a cell type, a higher PCC value indicates higher
deconvolution accuracy.

2. Structural similarity (SSIM):

SSIM=
2euiui +C

2
1

� �
2covðx0i,ex0iÞ+C2

2

� �
eui

2 +ui
2 +C2

1

� � esi2 + si2 +C2
2

� � ð36Þ

where covðxi,exiÞ is the covariance between the ground truth and the
predicted result, and C1 and C2 are 0.01 and 0.03, respectively. For a
cell type, a higher SSIM value indicates higher deconvolution accuracy.

3. Root mean square error (RMSE):

RMSE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
M

XM
j = 1

exij � xij

� �2vuut ð37Þ

For a cell type, a lower RMSE value indicates higher deconvolution
accuracy.

4. Jensen-Shannon divergence (JS):

JS =
1
2
KL ePi

���� ePi +Pi

2

 !
+
1
2
KL Pi

���� ePi +Pi

2

 !
ð38Þ

KL aijjbi

� �
=
XM

j =0
aij � log

aij

bij

 !
ð39Þ

where Pi and ePi are the spatial distribution of cell type i in the ground
truth and the predicted result, respectively. For a cell type, a lower JS
value indicates higher deconvolution accuracy.

5. Accuracy score (AS): We computed the average PCC, SSIM,
RMSE, and JS of all cell types predicted by each method, and sorted
the average PCC/SSIM and RMSE/JS of all deconvolution methods in
ascending and descending order, respectively, to obtain RANKPCC,
RANKSSIM, RANKRMSE, and RANKJS. Then, we calculated the average
of the four rankings to obtain the AS value of each method as fol-
lows:

AS=
1
4

RANKPCC +RANKSSIM +RANKRMSE +RANKJS

� � ð40Þ

For a dataset, the method with the highest AS value has the best
performance among all deconvolution methods.

For the DPLFC dataset, the cell type composition of each spot in
the ST slices hasnotbeen validatedby any experiments. Tobenchmark
deconvolutionmethods in processing this real ST dataset, we adopted
the cortical layers annotated by the original study as ground truth. We
defined the accuracy score for the deconvolution results of the DPLFC
datasets as the predicted proportion of one cell type in its corre-
sponding cortical layer. Additionally, we used the Wilcoxon Rank Sum
test to calculate P-values for the difference in the average proportion
of each excitatory neuron cell type between the corresponding layer
and the other layers across all samples. The method with the highest
accuracy score and the lowest P-value has the highest deconvolution
accuracy.

Evaluation of alignment on continuous slices
We employed a 3D STARmap dataset of the mouse brain from Wang
et al. study to build a ground truth to compare the performance of
Scube, PASTE, and STAligner. Specifically, we divided the
1400 µm× 1700 µm× 100 µmmouse brain sample into ten 10 µm thick
slices, fŜig, andused these slices as a ground truth. To simulate changes
in the shape and position of slices during tissue sectioning, we ran-
domly flipped, cropped, translated, and rotated each ground truth
slice, to generate an ST dataset comprising consecutive 2D slices, Si

� �
.

Specifically, each slice (except the first slice) was randomly flipped,
rotated by a random degree of 0°–360°, and translated by a random
distance of 300−2000μm along the x-axis and/or y-axis. Moreover,
each slice was cropped from its edges with a crop ratio of 0.05–0.25.
Then, we used Scube, PASTE, and STAligner to align each pair of
adjacent simulated slices, Si,Si + 1

� �
, and obtain the aligned pair of sli-

ces, S0i,S
0
i+ 1

� �
.

To compare the alignment results of Scube, PASTE, and STAligner
with the ground truth, wefirst calculated the transformationmatrixMi

from an aligned slice S0i and its corresponding ground truth slice Ŝi as

Mi = S
0 3ð Þ
i

Ŝ
3ð Þ
i

11 × 3

 !�1
ð41Þ

where S0ð3Þi and Ŝ
ð3Þ
i are the first three columns of S0i and Ŝi, respectively.

We used the transformation matrix Mi to transform the aligned slice
S0i + 1 adjacent to S0i, as

S*i + 1 =Mi

S0i + 1
11 ×ni+ 1

 !
ð42Þ

Then, we divided the transformed aligned slice S*i+ 1 and its cor-
responding ground truth slice Ŝi+ 1 into 10 × 10 grids, and calculated
the SSIM/PCCvalues between the cell type compositions of the grids in
S*i + 1 and Ŝi+ 1, tomeasure the accuracy of Scube, PASTE, and STAligner.
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In addition, we employed mouse brain MERFISH, mouse embryo
Stereo-seq, and mouse brain Spatial Transcriptomics1 data to assess
the performance of Scube, PASTE, and STAligner. As there are no
ground truths for these datasets, we divided the common area of each
pair of adjacent slices into 10 × 10 grids, and calculated the SSIM/PCC
values between the cell type composition of the grids in the two
adjacent slices aligned by Scube, PASTE and/or STAligner to measure
the performance of the two methods.

Hyperparameter settings for benchmarking methods
The selection of the hyperparameters for each method was followed
by the official tutorials and codes provided by their respective authors:

• STAligner: https://staligner.readthedocs.io/en/latest/Tutorial_
DLPFC.html

• PRECAST: https://feiyoung.github.io/PRECAST/articles/PRECAST.
BreastCancer.html

• STACI:
STACI GitHub repository for Visium and Spatial Transcriptomes
data, and cells with gene number less 10 were filtered:
https://github.com/uhlerlab/STACI/blob/master/train_gae_
visium_10xADFFPE.ipynb
for MERFISH data:
https://github.com/uhlerlab/STACI/blob/master/train_gae_
starmap_multisamples.ipynb

• STAGATE: https://stagate.readthedocs.io/en/latest/T1_DLPFC.html
• SpaGCN: https://github.com/jianhuupenn/SpaGCN/blob/master/

tutorial/tutorial.ipynb
• BayesSpace: https://edward130603.github.io/BayesSpace/

articles/maynard_DLPFC.html
• stLearn: https://stlearn.readthedocs.io/en/latest/tutorials/

stSME_clustering.html#Human-Brain-dorsolateral-prefrontal-
cortex-(DLPFC)

• CARD: https://yingma0107.github.io/CARD/documentation/04_
CARD_Example.html

• Cell2location: https://cell2location.readthedocs.io/en/latest/
notebooks/cell2location_tutorial.html

• DestVI:https://docs.scvi-tools.org/en/stable/tutorials/
notebooks/spatial/DestVI_tutorial.html

• DSTG: https://github.com/Su-informatics-lab/DSTG
• RCTD: https://raw.githack.com/dmcable/spacexr/master/

vignettes/spatial-transcriptomics.html
• Seurat: https://satijalab.org/seurat/archive/v3.2/integration.html
• SpatialDWLS: https://drieslab.github.io/Giotto_site_suite/articles/

analyses_deconvolution_Oct2021.html
• SPOTlight: https://marcelosua.github.io/SPOTlight
• Stereoscope:https://docs.scvi-tools.org/en/stable/user_guide/

models/stereoscope.html
• STRIDE: https://stridespatial.readthedocs.io/en/latest/tutorials/

Mouse_embryo.html
• Tangram: https://github.com/broadinstitute/Tangram

The hyperparameters used for each method were reported in
Supplementary Data 2.

Statistics & reproducibility
No statisticalmethodwas used to predetermine sample size. In Fig. 2a,
b, the CARDwas excluded from the benchmark on the scRNA-seq data
simulated datasets due to lack of spatial information for these data-
sets. In Supplementary Fig. 4e, the STRIDEwasnot shown inStereo-seq
mouse embryo brain dataset due to a runtime error for this dataset. In
Supplementary Fig. 14a, two slices were excluded due to the lack of
L6b cells, which prevented the definition of ground truth. The
experiments were not randomized. The Investigators were not blinded
to allocation during experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All relevant data supporting the key findings of this study are available
within the article and its Supplementary Information files. The simu-
lation datasets used for the evaluation of Spoint and other deconvo-
lution methods are available in a GitHub repository at https://github.
com/QuKunLab/SpatialBenchmarking. The raw data of 11 ST datasets
and five paired single-cell/nucleus RNA sequencedatasets are available
from the following studies: (1) 12 slices of human DLPFC 10X Visium
data at http://research.libd.org/spatialLIBD/34; (2) six slices of human
breast cancer 10X Visium data at https://doi.org/10.5281/zenodo.
473973935; (3) four slices of human breast cancer 10X Visium data:
Parent_Visium_Human_BreastCancer, V1_Breast_Cancer_Block_A_Sec-
tion_1, V1_Breast_Cancer_Block_A_Section_2 and Visium_FFPE_Human_-
Breast_Cancer at https://support.10xgenomics.com/spatial-gene-
expression/datasets14; (4) one slice of human breast cancer 10X Vis-
ium data: Invasive Ductal Carcinoma Stained With Fluorescent CD3
Antibody at https://support.10xgenomics.com/spatial-gene-
expression/datasets30; (5) Mouse brain STARmap data at https://
www.starmapresources.org/data58; (6) 33 slices of Mouse MOp MER-
FISH data at https://doi.brainimagelibrary.org/doi/10.35077/g.2113; (7)
one slice of mouse E16.5 embryo brain Stereo-seq data, one slice of
mouse brain Stereo-seq data, and 13 slices of mouse E16.5 whole
embryo Stereo-seq data at https://db.cngb.org/stomics/mosta/
download/4; (8) ten slice of human brain MERFISH data at https://
datadryad.org/stash/dataset/doi:10.5061/dryad.x3ffbg7mw49; (9)
75 slice of mouse whole brain Spatial Transcriptomics data are avail-
able in the GEO database under accession number GSE14774760; (10)
single-nucleus transcriptomics data across multiple human cortical
areas at https://portal.brain-map.org/atlases-and-data/rnaseq/human-
multiple-cortical-areas-smart-seq51; (11) single-cell transcriptomicsdata
of human breast cancer data at https://singlecell.broadinstitute.org/
single_cell/study/SCP103935; (12) single-cell transcriptomics data of
mouse embryo brain at http://mousebrain.org/development/
downloads.html83; (13) single-cell transcriptomics data of mouse
whole cortex and hippocampus at https://portal.brain-map.org/
atlases-and-data/rnaseq/mouse-whole-cortex-and-hippocampus-
10x52; (14) single-cell transcriptomics data of mouse whole brain at
mousebrain.org/adolescent/downloads.html84. All the aforemen-
tioned data used in this study are available in a public Zenodo repo-
sitory at https://doi.org/10.5281/zenodo.8316334. Source data for
figures are provided with this paper. Source data are provided with
this paper.

Code availability
The open-source package of SPACEL is available at a GitHub reposi-
tory: https://github.com/QuKunLab/SPACEL85. We uploaded all codes
and scripts used for the analyses and figure plotting in this study to a
public Zenodo repository (https://doi.org/10.5281/zenodo.8316334).
Thedocumentation, usage instructions andother relevant information
related to SPACEL can be accessed through (https://spacel.
readthedocs.org).
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