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ABSTRACT 

Activation of inflammasomes—immune system receptor sensor complexes that selectively activate 
inflammatory responses—has been associated with diverse human diseases, and many nanomedicine 
studies have reported that structurally and chemically diverse inorganic nanomaterials cause excessive 
inflammasome activation. Here, in stark contrast to reports of other inorganic nanomaterials, we find that 
nickel-cobalt alloy magnetic nanocrystals (NiCo NCs) actually inhibit activation of NLRP3, NLRC4 and 
AIM2 inflammasomes. We show that NiCo NCs disrupt the canonical inflammas ome ASC speck formation 
process by downregulating the lncRNA Neat1 , and experimentally confirm that the entry of NiCo NCs into 
cells is required for the observed inhibition of inflammas ome activ ation . Furthermore, we find that NiCo 
NCs inhibit neutrophil recruitment in an acute peritonitis mouse model and relieve symptoms in a colitis 
mouse model, again by inhibiting inflammas ome activ ation . Beyond demonstrating a highly surprising and 
apparently therapeutic impact for an inorganic nanomaterial on inflammatory responses, our work suggests 
that nickel- and cobalt-containing nanomaterials may offer an opportunity to design anti-inflammatory 
nanomedicines for the therapeutics of macrophage-mediated diseases. 
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cholesterol [ 19 ] and asbestos [ 20 ], are known to 
activate NLRP3 inflammasomes. Work to date has 
indicated that most examined nanomaterials, includ- 
ing silicon oxide [ 6 , 20 , 21 ], metal and metal-based 
nanomaterials [ 5 , 8 , 22 –24 ] and carbon nanomate- 
rials [ 25 ], etc., can activate inflammasomes (mainly 
NLRP3 inflammasomes), by causing K 

+ efflux [ 5 ], 
Ca 2 + influx [ 24 ], ROS generation [ 20 ], lysosome 
destruction [ 21 , 24 ] or disruption of autophagy 
[ 8 ]. In response to specific stimuli, the relevant 
inflammasome sensors (e.g. nucleotide-binding 
domains and leucine-rich repeat receptors (NLRs) 
or absent in melanoma 2 (AIM2)-like receptors 
(ALRs)) assemble with an adapter protein (an 
apoptosis-associated speck-like protein containing a 
CARD, denoted as ASC) and pro-caspase-1 to form 

inflammas omes, resulting in the cleavage and activa- 
tion of caspase-1. Subsequently, activated caspase-1 
can cleave proinflammatory IL-1 family cytokines 
into their bioactive forms, IL-1 β and IL-18 [ 9 , 26 ]. 

©The Author(s) 2023. Published
Commons Attribution License ( h
work is properly cited. 
NTRODUCTION 

nflammas ome activ ation is essential for innate
mmune responses as it facilitates the clearance of
athogens and/or damaged cells [ 1 , 2 ]. Recently, it
as been revealed that the activation of inflamma-
omes also participates in adaptive immunity [ 3 , 4 ],
nd some nanomaterials can activate inflamma-
omes to serve as an adjuvant vaccine with increased
mmunogenicity [ 5 –8 ]. However, inflammasome
ctivation can also be a major driver of autoimmune
nd metabolic disorders, including Alzheimer’s
isease, Parkinson’s disease, pulmonary fibrosis,
nflammatory bowel disease, type II diabetes, gout,
varian aging and atherosclerosis [ 1 , 2 , 9 , 10 ]. A
arge number of stimuli, including UV radiation
 11 ], viral and bacterial infection [ 12 –14 ], extra-
ellular adenosine triphosphate (ATP) [ 15 , 16 ] and
-amyloid plaques [ 17 ], as well as particles such as
onosodium urate crystals (MSU) [ 18 ], alum [ 7 ],
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Due to the relationship of inflammasome activa-
ion with autoimmune and metabolic disorders, ef-
ective inflammasome inhibitors are highly required.
o far, a series of small molecules, including MCC-
50 [ 27 ], oridonin [ 28 ], omega-3 fatty acids [ 29 ]
nd fenamate non-steroidal anti-inflammatory drugs
 30 ], have been identified to inhibit the activa-
ion of inflammas omes. Macrop hages are the main
ell type that produces inflammas omes, and are
lso the first and primary cell type in the body
hat processes nanoparticles [ 31 , 32 ]. This appar-
nt macrophage targeting has motivated much re-
earch in nanomedicine, suggesting the possibility
hat nanoparticles may outperform small molecule
nhibitors based on their processing by macrophages,
nabling precise and highly efficient delivery of ther-
peutic agents. Very recently, a cationic lipid-assisted
egylated-poly(lactic-co-glycolic acid) nanoparticle
CLAN) was shown to successfully deliver Cas9
RNA (mCas9) and guide RNA (gRNA) into
acrophages, which achieved targeted editing of the
LRP3 gene to inhibit inflammas ome activ ation

 33 ]. However, looking beyond examples of load-
ng a nanomaterial with inflammasome inhibitors
otwithstanding [ 34 , 35 ], we are unaware of any re-
orts showing that a nanoparticle per se can inhibit
nflammas ome activ ation . That is, while we know
hat a variety of nanoparticles cause inflammasome
ctivation, little if any work has explored the idea that
ome useful property inherent to a particular type of
anoparticle could actually be exploited to inhibit in-
ammas ome activ ation . 
Here we found that nickel-cobalt alloy nanocrys-

als (NiCo NCs) efficiently inhibit the activation of
LRP3 inflammasomes by multiple agonists. NiCo
Cs were also confirmed to inhibit the activation
f NLRC4 and AIM2 inflammasomes, indicating
heir broad-spectrum inhibitory effects against di-
erse canonical inflammasome types (Fig. 1 ). Ac-
ording to the ASC speck formation assay result,
iCo NCs disrupted the assembly of inflamma-
omes to inhibit these three kinds of inflammasome
ctivation. RNA sequencing analysis revealed that
iCo NCs inhibited the formation of ASC speck by
ownregulating of a long non-coding RNA Neat1 .
urthermore, NiCo NCs were observed to relieve
ymptoms of acute peritonitis and colitis in mice,
hich was attributed to its inherent inhibition of in-
ammasome activation. 

ESULTS AND DISCUSSION 

nhibition of NLRP3 inflammasome 

ctivation 

s the main cells which express inflammasome
enes, macrophages function as major endocytic
Page 2 of 11 
cells, which are also the first and primary cell type 
in the body that processes nanoparticles. This moti- 
vated our effort to examine whether inflammasome 
activation can be appreciably inhibited by exposure 
to certain nanomaterials, and we finally found such 
a nanomaterial. NiCo NCs were prepared via a pre- 
viously reported microwave irradiation method us- 
ing a 7 : 3 molar ratio of Ni : Co precursors (Supple-
mentary Fig. 1) [ 36 ]. We successfully obtained NiCo 
NCs with a diameter of 20–30 nm, and confirmed 
their expected ring-like structure, which forms on ac- 
count of a magnetic dipolar interaction (Fig. 2 a and 
b, and Supplementary Fig. 2). The zeta potential of 
NiCo NCs ( −26.9 ± 1.23 mV) was measured using 
zeta seizer. Moreover, the results of the zeta potential 
for the NiCo NCs suspension showed that proteins 
and organic molecules in cell culture medium have 
minimal impact on the interactions between NiCo 
NCs and the cells (Supplementary Fig. 3) [ 37 ]. 

Numerous studies have reported that diverse 
nanomaterials induce NLRP3 inflammasome acti- 
vation; such studies have typically used caspase-1 
and IL-1 β as activation markers [ 25 ]. We found that 
NiCo NCs pretreatment attenuated both caspase- 
1 activation and IL-1 β maturation in LPS-primed 
bone-marrow-derived macrophages (BMDMs) in- 
duced by nigericin (a commonly used NLRP3 in- 
flammas ome agonist), and the attenuation is NiCo 
NCs dose-dependent (Fig. 2 c and d). And at a con-
centration of 30 μg/mL, the release of IL-1 β could 
be almost completely inhibited by NiCo NCs. Fur- 
ther, the expression of pro–IL-1 β was not attenuated 
upon NiCo NCs treatment, suggesting that NiCo 
NCs do not interfere with the LPS-induced prim- 
ing process in BMDMs (Fig. 2 c). Similarly, we found 
that NiCo NCs pretreatment also blocked nigericin- 
induced secretion of IL-18, another inflammasome- 
dependent cytokine, again in a dose-dependent 
manner (Fig. 2 e). Analysis of TNF- α production—
an inflammasome-independent cytokine—was not 
affected by NiCo NCs treatment, a finding which 
suggested that NiCo NCs may inhibit IL-1 β produc- 
tion through suppressing inflammasome activation 
(Fig. 2 f). The release of IL-1 β was also significantly 
inhibited even when NiCo NCs were added after the 
activation of the NLRP3 inflammasome (Supple- 
mentary Fig. 4). In addition, 30 μg/mL NiCo NCs 
treatment had no effect on cell viability of BMDMs 
(Supplementary Fig. 5). Extending these insights be- 
yond a single cell type, we again observed that NiCo 
NCs treatment resulted in dose-dependent inhibi- 
tion of caspase-1 activation and IL-1 β maturation in 
a human leukemic cell line (THP-1) (Fig. 2 g). 

To exclude the possibility of some nigericin- 
specific effect in the observed inhibition of NLRP3 
inflammas ome activ ation, we also conducted 
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Figure 1. Schematic illustration for inhibition of NLRP3, NLRP4 and AIM2 inflammasome activation by NiCo NCs. NiCo NCs inhibited activations of 
inflammasomes induced by different agonists. We used RNA sequencing to search for the mechanism by which NiCo NCs broadly inhibit inflammasomes 
activation. Neat1 , a long noncoding RNA that has been reported to bind to NLRP3, NLRC4 and AIM2 inflammasomes to enhance their assembly, was 
found to be significantly downregulated after NiCo NCs treatment. 
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xperiments which incorporated multiple well-
stablished NLRP3 agonists as control groups,
ncluding SiO 2 NPs, ATP and monosodium urate
MSU) [ 21 , 29 ]. Supporting the generality of the
bserved effects, NiCo NCs inhibited caspase-1
ctivation and IL-1 β maturation as induced by
iO 2 , by ATP and by MSU treatment (Fig. 2 h and
). These results indicated that NiCo NCs inhibit
he activation of NLRP3 inflammasomes caused by
ultiple agonists. 

nhibition of NLRC4 and AIM2 
nflammasomes activation 

e also tested if NiCo NCs may exert inhibitory ef-
ects against the activation of other canonical inflam-
asomes, including the extensively studied NLRC4
Page 3 of 11 
and AIM2 inflammasomes. Indeed, similar to our 
observations for inhibition of NLRP3 inflamma- 
some activation, we found that NiCo NCs blocked 
caspase-1 activation and IL-1 β maturation in LPS- 
primed BMDMs stimulated with salmonella (an 
agonist of NLRC4 inflammas omes) or with poly 
(dA : dT) (an agonist of AIM2 inflammasomes) 
(Fig. 3 a and b). As shown in Fig. 3 c, the secretion
of IL-18 induced by salmonella or poly (dA : dT)
was also dramatically attenuated by NiCo NCs treat- 
ment. We observed that NiCo NCs treatment caused 
inhibition of caspase-1 activation and IL-1 β mat- 
uration in THP-1 cells which were activated with 
salmonella or poly (dA : dT) (Fig. 3 d). Together,
these results underscore that NiCo NCs exert broad- 
spectrum inhibitory effects on the activation of 
NLRP3, NLRC4 and AIM2 inflammasomes. 
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Figure 2. NiCo NCs inhibit the nigericin induced NLRP3 inflammasomes activation. (a) TEM image of NiCo NCs. (b) EDS 
mapping of NiCo NCs showing element distribution of Ni and Co. (c and d) LPS-primed BMDMs were treated with different 
doses of NiCo NCs and then stimulated with nigericin. Medium supernatant (SN) and cell lysis (Input) were analyzed by 
immunoblotting for mature IL-1 β (mIL-1 β ), activated caspase-1 (p20), pro-IL-1 β and pro-caspase-1. (d–f) Supernatants were 
also analyzed by ELISA for (d) IL-1 β , (e) IL-18 and (f) TNF- α release. (g) PMA-differentiated THP-1 cells were treated with 
different doses of NiCo NCs and then stimulated with nigericin. Medium supernatant (SN) and cell lysis (Input) were analyzed 
by immunoblotting. (h and i) LPS-primed BMDMs were treated with 30 μg/mL NiCo NCs and then stimulated with SiO 2 , ATP or 
MSU. Medium supernatant (SN) and cell lysis (Input) were analyzed by immunoblotting as indicated in (h), supernatants were 
analyzed by ELISA for IL-1 β release (i). All data are presented as mean ± s.d., n = 3 independent experiments. Statistical 
significance was assessed using one-way analysis of variance (ANOVA). * P < 0.05, ** P < 0.01, *** P < 0.001. 
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echanism of inhibition on the activation
f inflammasomes via NiCo NCs 
o reveal the mechanism by which NiCo NCs in-
ibit the activation of NLRP3, NLRC4 and AIM2
nflammasomes, we first assessed the expression of
SC, which is the common protein present in all
hree of these inflammasome types. As shown in
ig. 4 a, the expression of ASC was not affected by
iCo NCs treatment. We also examined formation
f ASC oligomers, a key event in NLRP3, NLRC4
nd AIM2 inflammasome activation [ 27 , 38 ]. Specif-
cally, cytosolic fractions from BMDM lysates were
ross-linked, and ASC monomers and higher or-
er complexes were observed after stimulation with
igericin, salmonella, or poly (dA : dT), and the ASC
omplex formation was significantly attenuated by
iCo NCs treatment (Fig. 4 a). Moreover, the in-
ibitory effect of NiCo NCs on ASC speck forma-
ion was also identified by immunofluorescence as-
Page 4 of 11 
says : ASC was evenly distributed in the untreated or 
LPS-primed cells, but upon nigericin, salmonella, or 
poly (dA : dT) activation, ASC appeared as bright 
specks under fluorescence microscopy, and NiCo 
NCs treatment clearly attenuated the ASC speck for- 
mation process (Fig. 4 b). These results suggest that 
NiCo NCs can inhibit activation of NLRP3, NLRC4 
and AIM2 inflammasomes by decreasing the forma- 
tion of ASC specks. 

To further explore the mechanism that NiCo 
NCs inhibited the formation of ASC speck, RNA 

sequencing, a method that is considered the most 
powerful and robust technique for measuring gene 
expression at genome-wide level, was carried out 
on different treated BMDM groups to find genes 
that may be involved in this process. The Pearson 
correlation coefficient of RNA sequencing sig- 
nals suggested excellent reproducibility between 
the biological replicates (Supplementary Fig. 6). 
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espite the KEGG pathway enrichment analysis
f differential expressed genes (DEGs) showed
n enrichment in pathways such as TNF signaling
athway, rheumatoid arthritis, and MAPK signaling
athway following treatment with NiCo NCs com-
ared to the Blank group (Supplementary Fig. 7),
he principal component analysis (PCA) performed
n the gene expression of all samples indicated that
he NiCo NCs group and Blank group exhibited
reater similarity in gene expression (Fig. 4 c). And
amples treated with inflammasome agonists and
amples co-treated with inflammas ome agonists
nd NiCo NCs can be seperated into two clusters
Fig. 4 c). We then performed a DEGs analysis to
nd the genes that caused the above two groups
o be differentiated. Figure 4 d showed the genes
hat upregulated/downregulated significantly after
igericin, salmonella, or poly (dA : dT) treatment
ompared with the LPS-priming group (Mock), and
heir expression downregulated/upregulated sig-
ificantly after NiCo NCs co-treatment, we named
hese two gene lists ‘Genes_up’ and ‘Genes_down,’
espectively. Supplementary Figs 8 and 9 show how
e obtained the list by comparing different groups. 
Page 5 of 11 
The pathway enrichment analysis showed 
that the Genes_up were enriched in immune 
respone-related functions, including osteoclast 
differentiation, leukocyte activation, immune 
response-regulating signaling pathway (Fig. 4 e). 
These findings suggest that these genes are potential 
candidates for suppressing inflammation induced 
by NiCo NCs. Notably, Neat1 , which was upreg- 
ulated by three inflammas ome agonists treatment 
and downregulated by inflammasome agonists 
and NiCo NCs co-treatment, is a reported long 
noncoding RNA (lncRNA) that plays an impor- 
tant role in inflammasome activation. Neat1 was 
reported to associate with the NLRP3, NLRC4 and 
AIM2 inflammasomes to enhance their assembly 
and subsequent pro–caspase-1 processing. Neat1 
deficiency significantly inhibits the activation of 
NLRP3, NLRC4 and AIM2 inflammasomes in 
BMDMs [ 39 ]. We further verified that NiCo NCs
treatment can significantly downregulate Neat1 
by real-time reverse transcription PCR (real-time 
RT-PCR) analysis (Fig. 4 f). 

The decrease of Neat1 could result from ei- 
ther depressed transcription or enhanced RNA 
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egradation. To determine which was the case for
iCo NCs, we measured the amount of Neat1 in
he presence and absence of actinomycin D (ActD),
n unspecific transcription blocker. ActD or NiCo
Cs treatment alone for 1.5 h significantly de-
reased the relative amount of Neat1 compared
o the control group, but NiCo NCs did not fur-
her decrease the amount of Neat1 in the cells
reated with ActD (Fig. 4 g), which suggested that
iCo NCs treatment suppressed the transcription
f Neat1 rather than enhanced the degradation pro-
ess. To shed more light on this, we performed
ssay for Transposase-Accessible Chromatin with
igh-throughput sequencing (ATAC-seq), a method
or mapping genome-wide chromatin accessibility
 40 , 41 ]. The transcription start site (TSS) enrich-
ent indicated the high quality of the dataset (Sup-
lementary Fig. 10). We found the gene body and
romoter region of Neat1 were significantly less ac-
essible in the NiCo NCs treated group compare to
he Blank group (Fig. 4 h), which further confirmed
iCo NCs treatment decreased the transcription of
eat1 . Collectively, these results indicated that NiCo
Cs inhibit the formation of ASC specks by down-
egulating the transcription of Neat1 , thereby in-
ibiting the activation of NLRP3, NLRC4 and AIM2
nflammasomes. 
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The necessity of NiCo NCs entering cells 
before exerting anti-inflammatory effects 
Inductively coupled plasma mass spectrome- 
try (ICP-MS) analysis revealed that different 
macrophage cell lines internalized NiCo NCs in a 
dose-dependent manner (Supplementary Fig. 11). 
To confirm that NiCo NCs enter cells prior to 
exerting anti-inflammatory effects, we conducted 
experiments with the widely used endocytosis in- 
hibitor cytochalasin D (Cyto D), w hich is know n to
block the endocytosis of nanoparticles in BMDMs 
[ 24 ]. Cyto D treatment significantly reduced the 
extent of endocytosis in different concentrations 
of NiCo NCs-treated cells (Fig. 5 a). Additionally, 
we used the fluorescein isothiocyanate (FITC) 
labelled-dextran (70 KD)—a known fluid-phase 
endocytosis indicator—to directly visualize the in- 
hibitory effect of Cyto D treatment on endocytosis 
[ 42 ]. FITC-dextran cellular entry was obviously 
detected in LPS-primed and NiCo NCs-treated 
BMDMs, and this entry was abolished upon treat- 
ment with Cyto D (Fig. 5 b). Importantly, we also
observed in nigericin-stimulated cells that both 
caspase-1 activation and IL-1 β maturation were 
suppressed by NiCo NCs treatment and con- 
firmed that these suppression phenotypes could be 
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ecovered by inhibiting the endocytosis of NiCo
Cs (Fig. 5 c and d). Collectively, these results
stablish that NiCo NCs must enter cells prior to
xerting their anti-inflammatory effects. 
To figure out the suppression related to geometry

r elements, we synthesized nickel nanoparticles
Ni NPs) and cobalt nanoparticles (Co NPs) in
dentical conditions as the control. Both Ni NPs and
o NPs have a morphology that is quite different
rom that of NiCo NCs (Fig. 5 e and f). However,
hey were also able to significantly inhibit the ac-
ivation of the NLRP3 inflammasomes (Fig. 5 g).
herefore, we attribute the inhibitory effect of NiCo
Cs to the presence of nickel and cobalt rather
han the geometry. Those results suggested that
ickel- and cobalt-containing nanomaterials may
ffer an opportunity to design nanomedicines with

nti-inflammatory properties. 
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Anti-inflammatory effects of NiCo NCs 
in vivo 
To verify the anti-inflammatory effects of NiCo NCs 
in vivo , we examined whether NiCo NCs can sup- 
press MSU-induced peritoneal inflammation in a 
mouse model. For context, MSU deposition in joints 
is associated with development of gout and pseu- 
dogout via NLRP3 inflammasome activation [ 18 ], 
and MSU is widely used to induce peritoneal inflam- 
mation disease models in mice [ 28 ]. Upon MSU 

induction of the model, NiCo NCs treatment sig- 
nificantly reduced production of IL-1 β in the ab- 
dominal cavity (Fig. 6 a). Moreover, NiCo NCs treat- 
ment accordingly caused a significant attenuation of 
the influx of neutrophils into the abdominal cav- 
ity (Fig. 6 b and c), thereby demonstrating in vivo 
that NiCo NCs can effectively attenuate activation of 
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nflammas omes in a peritoneal inflammation mouse
odel. 
The dextran sodium sulfate (DSS) model is

hought to usefully mimic the pathogenesis of
uman inflammatory bowel disease and has been
xtensively used to explore immune mechanisms of
olitis [ 43 ], and there are reports that DSS-induced
olitis in mice is mediated by NLRP3 inflamma-
omes [ 44 –46 ]. To test the effect of NiCo NCs
n DSS-induced colitis, DSS-treated mice were
dministered NiCo NCs via oral gavage. Upon
nduction of the DSS model, the control mice had
ore severe colitis than mice treated with NiCo
Cs, as evidenced by a significant shortening of the
olon (Fig. 6 d and e) and an obvious loss of weight
Supplementary Fig. 12). Further supporting anti-
nflammatory effects from NiCo NCs, H&E stained
ections of colonic tissue sections showed that NiCo
Cs treatment significantly reduced the damage of
ucosal epithelium in a DSS mouse model (Fig. 6 f).
inking our in vivo experimental results to our in
itro mechanistic studies, we found that the extent
f IL-1 β maturation was significantly attenuated by
iCo NCs treatment of DSS model mice (Fig. 6 g).
hus, the observed capacity of NiCo NCs to relieve
olitis symptoms relies, at least in part, on NiCo
Cs’ capacity to reduce IL-1 β maturation. 

ONCLUSION 

nflammasome activation is a major driver of many
iseases, such as Alzheimer’s disease, Parkinson’s dis-
ase, pulmonary fibrosis, type II diabetes, gout and
therosclerosis. Macrophages serve as the primary
efense mechanism of the body in the processing of
anoparticles, bringing about nanomaterials with a
atural ability to target macrophages in comparison
ith small molecule drugs. This study provides an
lternative approach to replacing small molecule
rugs for the treatment of diseases mediated by
yperactivation of the inflammasome. In the present
tudy, we found that NiCo NCs can effectively
nhibit the activation of NLRP3, NLRC4 and
IM2 inflammasomes by blocking inflammasome
ssembly. We also show that NiCo NCs can in-
ibit neutrophil recruitment in an acute peritonitis
ouse model, and can relieve symptoms in a colitis
ouse model. Our work also establishes that these
ffects result from inhibition of IL-1 β maturation.
n sharp contrast to previous reports suggesting
hat inorganic nanoparticles typically induce inflam-
asome activation, we demonstrate that inorganic
anoparticles themselves can actually inhibit the ac-
ivation of diverse types of inflammasomes. We have
emonstrated that NiCo NCs exert broad-spectrum
Page 9 of 11 
inhibitory effects on the activation of inflamma- 
somes by downregulating Neat1 . The mechanism 

by which NiCo NCs repress Neat1 transcription 
also deserves further study. If so, then perhaps the 
commonly encountered, strong limitation of inflam- 
masome activation that has to date faced engineered 
nanoparticle applications can be prevented or over- 
come by designing nickel- and/or cobalt-containing 
nanocrystals to achieve improved biocompatibility. 

Additionally, it is crucial to understand how the 
physicochemical attributes of nanostructured mate- 
rials, such as size, charge, morphology, composition 
and surface chemistry, affect immune responses by 
specific cell types. There is value in applying related 
knowledge to designing customized immunomodu- 
latory nanomaterials for specific diseases. There is 
also a great need for studies that focus on address-
ing the long-term clinical safety of immunomodula- 
tory nanomaterials, and rigorously optimizing them 

for their expected therapeutic effects before reliable 
clinical translation [ 47 ]. 

METHODS 

The details about the synthesis, characterizations, 
cell preparation, biological assay and analysis are in 
the Supplementary data. 

SUPPLEMENTARY DATA 

Supplementary data are available at NSR online. 
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