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Single-cell transcriptomics reveal a unique 
memory-like NK cell subset that accumulates 
with ageing and correlates with disease severity 
in COVID-19
Chuang Guo1,2†, Mingming Wu1†, Beibei Huang2†, Rui Zhao1, Linlin Jin1, Binqing Fu1,3, Ping Wang1, 
Dongyao Wang3, Meijuan Zheng4, Jingwen Fang2, Haiming Wei1,3*, Kun Qu1,2* and Fang Ni1,3*   

Abstract 

Background: Natural killer (NK) cells are innate lymphoid cells that mediate antitumour and antiviral responses. 
However, very little is known about how ageing influences human NK cells, especially at the single-cell level.

Methods: We applied single-cell sequencing (scRNA-seq) to human lymphocytes and NK cells from 4 young and 4 
elderly individuals and then analysed the transcriptome data using Seurat. We detected the proportion and pheno-
type of NK cell subsets in peripheral blood samples from a total of 62 young and 52 elderly healthy donors by flow 
cytometry. We also used flow cytometry to examine the effector functions of NK cell subsets upon IFN-α/IL-12+IL-15/
K562/IL-2 stimulation in vitro in peripheral blood samples from a total of 64 young and 63 elderly healthy donors. We 
finally studied and integrated single-cell transcriptomes of NK cells from 15 young and 41 elderly COVID-19 patients 
with those from 12 young and 6 elderly healthy control individuals to investigate the impacts of ageing on NK cell 
subsets in COVID-19 disease.

Results: We discovered a memory-like NK subpopulation (NK2) exhibiting the largest distribution change between 
elderly and young individuals among lymphocytes. Notably, we discovered a unique NK subset that was predomi-
nantly  CD52+ NK2 cells (NK2.1). These memory-like NK2.1 cells accumulated with age, exhibited proinflammatory 
characteristics, and displayed a type I interferon response state. Integrative analyses of a large-cohort COVID-19 
dataset and our datasets revealed that NK2.1 cells from elderly COVID-19 patients are enriched for type I interferon 
signalling, which is positively correlated with disease severity in COVID-19.
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Background
Human ageing is a complex, dynamic process that ulti-
mately leads to increased susceptibility to multiple 
chronic diseases, disability, and death [1]. With age, the 
immune system undergoes dramatic changes, which con-
tinuously progress to a state called immunosenescence 
[2]. An interesting phenomenon associated with immu-
nosenescence is inflammaging, which is characterized 
by chronic low-grade inflammation with elevated lev-
els of several proinflammatory cytokines, such as IL-6, 
IL-1, interferon-γ (IFN-γ), tumour necrosis factor (TNF), 
and diverse chemokines [3]. Inflammaging is considered 
a central hallmark of human ageing [4, 5], but its influ-
ence on specific types of immune cells remains largely 
unexplored.

NK cells are part of the innate immune system and 
function to eliminate infected or transformed cells, and 
NK cells also function as mediators of adaptive immunity 
[6, 7]. Following stimulation with viruses or cytokines, 
human NK cells can acquire adaptive or memory-
like properties, including long-term persistence and 
enhanced functional responsiveness, similar to adap-
tive memory T cells [8–14]. In humans, NK cells are 
typically subdivided into cytotoxic  CD56dim NK cells and 
 CD56bright NK cells, which are less cytotoxic but produce 
larger amounts of cytokines, including IFN-γ, TNF-α, 
GM-CSF, and IL-10 [15]. With ageing, there is a reduc-
tion in  CD56bright NK cells that is accompanied by an 
expansion of  CD56dim NK cells; together, these changes 
result in an overall increase in the absolute number of 
NK cells [16–19]. However, it should be noted that age-
related changes in human NK cell functionality have 
been inconsistent and controversial. For instance, studies 
have demonstrated reduced, normal, or even increased 
IFN-γ production upon NK cell activation in older adults 
[20, 21]. Although efforts have been made to investigate 
age-related changes in NK cells, such studies have been 
somewhat limited by the technical approaches. High-
resolution and unbiased analyses of the impacts of ageing 
on human NK cells are needed, especially within the con-
ceptual framework of the traditional  CD56dim NK cells 
and  CD56bright NK cells.

Single-cell RNA sequencing (scRNA-seq) provides an 
unbiased method to decipher cellular heterogeneity and 
cell states based on the transcriptomes of individual cells 
[22]. Here, we performed scRNA-seq and flow cytometry 

analyses, together with in  vitro functional assays, to 
characterize age-associated alterations in human NK 
cells. We discovered a subpopulation of NK2 cells that 
seemed to be phenotypically memory-like NK cells and 
exhibited the largest distribution change between elderly 
and young individuals among 9 blood immune cell sub-
populations. We further discovered a unique NK sub-
set that was predominantly  CD52+ NK2 cells in elderly 
individuals. These memory-like  CD52+ NK2 cells (herein 
termed NK2.1 cells) accumulated with age and exhibited 
proinflammatory characteristics. NK2.1 cells in elderly 
individuals displayed elevated sensitivity to type I inter-
feron stimulation in  vitro. Finally, integrative analyses 
of a large-cohort COVID-19 single-cell transcriptomic 
dataset with our single-cell datasets revealed that NK2.1 
cells from elderly COVID-19 patients are enriched for 
genes related to type I interferon signalling (e.g. ISG15, 
ISG20), which is positively correlated with disease sever-
ity in COVID-19. It therefore appears that this mem-
ory-like NK2.1 subset represents a potential target for 
immunotherapies to treat infectious diseases and should 
be considered during the development of immunological 
interventions for older adults.

Methods
Study design
We used scRNA-seq technology to capture the transcrip-
tomes of human NK cells and assess how ageing influ-
ences human NK cells. We applied flow cytometry to 
confirm observations from sequencing data. We also per-
formed an integrative analysis of COVID-19 single-cell 
transcriptomes of NK cells with those from healthy con-
trol individuals to investigate the impacts of ageing on 
NK cell subsets in COVID-19 disease. Details on human 
sample collection and data processing are described 
below.

Human samples
All healthy blood samples were de-identified. All blood 
samples for scRNA-seq and flow cytometry experiments 
were obtained from young and elderly healthy donors 
who came to the Health Management Center of the First 
Affiliated Hospital of Anhui Medical University (Hefei, 
China) for physical examinations; none of the donors had 
a history of cancer, HBV, HCV, or HIV infection; auto-
immune disease; diabetes; hypertension; or steroid usage. 

Conclusions: We identified a unique memory-like NK cell subset that accumulates with ageing and correlates with 
disease severity in COVID-19. Our results identify memory-like NK2.1 cells as a potential target for developing immu-
notherapies for infectious diseases and for addressing age-related dysfunctions of the immune system.
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Clinical characteristics are listed in Additional file  1: 
Table S1. All experiments using human blood samples in 
this study were approved by the Ethics Committee of the 
University of Science and Technology of China (approval 
no. 2020-KY196). Informed consent was obtained from 
all donors. Fresh whole blood samples were collected in 
2-mL tubes containing ethylenediaminetetraacetic acid 
(EDTA). PBMCs were isolated from whole blood within 4 
h of sample collection with Ficoll-Paque gradient centrif-
ugation (TBDsciences) according to the manufacturer’s 
instructions.

In this study, we performed scRNA-seq on PBMCs and 
purified NK cells from 4 elderly and 4 young healthy indi-
viduals. We applied flow cytometry in peripheral blood 
samples (i) from 62 young and 52 elderly healthy donors 
to detect the proportion and phenotype of NK cell sub-
sets, (ii) from 26 young and 27 elderly healthy donors for 
IFN-α stimulation experiments, (iii) from 18 young and 
16 elderly healthy donors for IL-12/IL-15 stimulation 
experiments, (iv) from 10 young and 10 elderly healthy 
donors for K562 stimulation experiments, and (v) from 
10 young and 10 elderly healthy donors for IL-2 stimu-
lation experiments. Details on the sample information of 
healthy donors are provided in Additional file 1: Table S1.

Detection of CMV serostatus
Antibodies to HCMV were tested with ELISA using com-
mercial kits for IgM (Captia™ Cytomegalovirus IgM, 
Trinity biotech) and IgG (Captia™ Cytomegalovirus IgG, 
Trinity biotech). The CMV serostatus of donors used in 
this study is shown in Additional file 1: Table S1.

In vitro stimulation of NK cells
Freshly isolated PBMCs from healthy individuals were 
cultured for 16 h in RPMI 1640 medium containing 20% 
foetal bovine serum (Sigma) in the presence of the fol-
lowing stimuli: 1000 U/mL recombinant human IFN-α 
(Biolegend) or 10 ng/mL recombinant human IL-12 
(Peprotech) plus 100 ng/mL IL-15 (Peprotech). GolgiS-
top (Sigma) was added to the medium for 4 h for stimu-
lation, and antihuman CD107a antibody (BD) was added 
for 2 h for stimulation. Cells were cultured in a medium 
alone as a negative control.

Collection of COVID‑19 samples and selection of NK cells
Previously published scRNA-seq datasets from Ren et al. 
[23] were downloaded from the Gene Expression Omni-
bus (GEO) database (accession number GSE158055); 
processed datasets from Schulte-Schrepping et  al. [24] 
(Bonn data and Berlin data) were downloaded from 
FastGenomics (https:// www. fastg enomi cs. org) as Seurat 
objects (https:// beta. fastg enomi cs. org/p/ Kraem er_ 2021_ 
COVID 19_ NK), and datasets from Witkowski et al. [25] 

were downloaded from the GEO database (accession 
number GSE184329).

NK cells present in each dataset were selected in a 
three-step process: (i) we extracted PBMC-derived sin-
gle-cell sequencing datasets based on the sample source, 
(ii) we extracted the qualified samples (young ≤ 30 years; 
elderly ≥ 65 years) based on the age information, and (iii) 
NK cells were selected based on the cell type label pro-
vided by Schulte-Schrepping et  al.’s study [24]. We fur-
ther checked the selected NK cells using classical NK cell 
markers (KLRF1, GNLY, NKG7) and applied the SingleR 
[26], which is widely used for cell type identification, to 
remove non-NK cells.

Single‑cell RNA sequencing
For the scRNA-seq analysis of human blood lympho-
cytes and NK cells, lymphocytes were sorted as  CD45+ 
cells, and NK cells were sorted as CD3/CD19/CD20/
CD14−CD7+ cells using FACS (SONY SH800S); the 
purity was above 95%. The cells from 4 elderly indi-
viduals were pooled in one tube, and the cells from 4 
young individuals were pooled in another tube. We then 
counted and resuspended the pooled cells at a concentra-
tion of 1000 cells/μL, aiming for an estimated 6000 cells 
per library, following the instructions of the single-cell 
3′ solution v3 reagent kit (10X Genomics). Single-cell 
libraries were constructed strictly according to the manu-
facturer’s standard protocols. Each sequencing library 
was generated with a unique sample index. Libraries were 
sequenced on the Illumina NovaSeq 6000 system.

RNA sequencing data processing (QC and dimensionality 
reduction)
Following sequencing data acquisition, the FASTQ files 
of each human sample were aligned to the hg19 refer-
ence genome, and UMI counts were quantified using 
the 10X Genomics Cell Ranger pipeline (v3.1.0, 10X 
Genomics [27]) with default parameters. Quality con-
trol and dimensionality reduction were performed 
in R v3.6.3 using the Seurat package v3.2.2 [28]. For 
the initial QC step, we created Seurat objects for the 
young and elderly groups and filtered out the cells that 
expressed < 400 genes, > 3000 genes or > 10% mito-
chondrial genes. Moreover, genes expressed in fewer 
than 5 cells were excluded. Next, we used the “Inte-
grateData” function to integrate the top X (param-
eter for CCA) dimensions of the two objects for the 
anchor weighting procedure. Then, we selected the top 
Y (parameter for PCA) PCA dimensions to perform 
PCA on the integrated object and set the resolution 
as Z (parameter for resolution) to obtain the clusters 
(parameter setting:  CD45+ lymphocyte clustering: CCA 
= 20, PCA = 25, resolution = 0.29;  Lin−CD7+ NK cell 

https://www.fastgenomics.org
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clustering: CCA = 25, PCA = 25, resolution = 0.5; 
NK cell clustering from COVID-19 and HD samples: 
CCA = 25, PCA = 25, resolution = 0.5). We removed 
the clusters that contained fewer than 2% of the cells 
after clustering. Using SingleR [26], a small number 
(469 cells) of contaminated non-NK cells was found 
in the COVID-19 source dataset, which was excluded 
from further analysis. To quantify the similarity of the 
two datasets, we calculated the Jaccard index of subsets 
using the top 50 ranking cluster-specific marker genes.

Normalization and differential expression analysis
The gene expression count matrix for each cell was 
normalized using the “pp.normalize_total” function of 
Scanpy [29] and log-transformed to the product (base e) 
after the addition of a pseudocount of 1. We performed 
differential gene expression analysis for our identified 
cell subpopulations using the Wilcoxon rank-sum test 
within the Seurat “FindAllMarkers” function. We also 
performed differential gene expression analysis between 
young and elderly individuals using the “FindMarkers” 
function with multiple default thresholds in the Seurat 
package. For Gene Ontology (GO) analysis of DEGs, we 
then uploaded these DEG groups to the Metascape [30] 
website (https:// metas cape. org/ gp/ index. html#/ main/ 
step1) and used the default parameters to perform Gene 
Ontology (GO) analysis of the gene list.

Standardization of gene set expression
We downloaded the gene set (such as the top 50 age-
associated genes obtained from Peters et  al. [31]) and 
calculated the signature score to compare the enrichment 
of the gene set in the cells or samples. For the normal-
ized expression data, we first summed the Z-score of the 
expression value of each gene in the gene set in all cells 
and then normalized them to values from 0 to 1 between 
cells as a signature score. P-values were obtained with the 
Wilcoxon rank-sum tests.

Evaluating the proportion of 9 lymphocyte subpopulations 
from bulk RNA‑seq data
We first identified the expression of signature genes of 
each cell subpopulation in our single-cell analysis (Addi-
tional file 1: Table S2) and then calculated the fold change 
of each signature gene (elderly vs. young) in downloaded 
bulk RNA-seq datasets of PBMCs from 10 young and 10 
elderly individuals [32]. We used the average fold change 
of all signature genes to estimate the enrichment of each 
cell subpopulation in elderly individuals. P-values were 
estimated by two-sided Student’s t-tests.

Estimating the connectivity of NK subsets using 
partition‑based graphical abstraction (PAGA)
For similarity-based cell network analysis and visualiza-
tion, we used tools from the Python (v3.6) library Scanpy 
(v1.5.1). The input matrix for Scanpy is the normalized and 
log-transformed highly variable 2200 gene expression data. 
PAGA [33], which is a high-resolution pseudotime pre-
diction algorithm, was then used to estimate and quantify 
the connectivity of partitions (the NK1.1, NK1.2, NK2.1, 
NK2.2, and NK2.3 cell subsets) of the single-cell graph. 
For the PAGA graph, the node size is proportional to the 
number of cells in the subset, and the thickness of the edge 
shows the strength of confidence in the connectivity of par-
titions between subsets (parameters: n_pcs = 25, n_neigh-
bours = 5, random_state = 3).

Transcriptional regulon enrichment analysis
We used SCENIC [34] (version 1.1.2.2) to predict TF activi-
ties from the scRNA-seq data. The normalized and log-
transformed variable gene expression matrix of NK cells 
was used as the input feature for SCENIC. First, TF-gene 
coexpression modules were defined in a data-driven man-
ner with GENIE3 [34, 35]. Then, those modules are refined 
via RcisTarget [34] by keeping only those genes that con-
tain the respective TF binding motif. AUCell [34] scores 
individual cells by assessing for each TF separately whether 
target genes are enriched in the top quantile of the cell 
signature. For the regulons determined by SCENIC, we 
retained regulons with activity differences greater than 0.03 
between the young and elderly individuals in each subset.

Using PAGA to order cells in pseudotime along a trajectory
PAGA-initialized single-cell embedding for selected cell 
types was estimated with Scanpy v1.5.1 on the normal-
ized and log-transformed expression matrix, with the fol-
lowing parameters: n_pcs = 20, n_neighbors = 30, and 
random_state = 3. The differentiation map was estimated 
using PAGA [33] implemented in Scanpy v1.5.1 with the 
same parameters. Twenty diffusion components are used 
as input to generate the ForceAtlas2 layout. As NK1.1 cells 
showed enrichment of gene expression for the CD56bright 
NK cell signature genes, we randomly selected a NK1.1 cell 
as the root cell to construct the diffusion pseudotime on 
the selected NK cell types. We used the neighbours() func-
tion and the dpt() function with a default parameter for 
computing the pseudotime of each cells.

Results
An “NK2” subpopulation exhibits the largest distribution 
divergence between young and elderly individuals
We initially profiled fresh human peripheral blood sam-
ples collected from 4 young (ages 21–28 years) individuals 
and 4 elderly (ages 65–68 years) individuals (Additional 

https://metascape.org/gp/index.html#/main/step1
https://metascape.org/gp/index.html#/main/step1
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file 2: Fig. S1A and Additional file 1: Table S1). Lympho-
cytes were then sorted and subjected to scRNA-seq using 
the 10X platform (Additional file 2: Fig. S1B). After rigor-
ous quality control (QC) processing, we retained a total 
of 11,279 high-quality single transcriptomes (Additional 
file 2: Fig. S2A, B). Of these, 4930 cells were from young 
individuals, and 6349 cells were from elderly individuals. 
We applied Seurat [28] (version 3.2.2) to integrate the 
single-cell transcriptomes from young and elderly indi-
viduals and identified 9 unique immune cell subpopula-
tions, which were visualized via t-distributed stochastic 
neighbour embedding (t-SNE) (Fig. 1A). We then applied 
Souporcell [36], a genotype-based unmixing method that 
can deconvolve scRNA-seq data for assigning cells to 
their donor of origin, to help assess the per donor repre-
sentation of the different cell clusters and to identify any 
batch effects for individual samples. We obtained 96.6% 
(10,894/11,279) of cells with individual sample identity 
and observed that each cell cluster was composed of cells 
originating from the 4 young and 4 elderly individuals 
(Additional file 2: Fig. S2C, D), indicating that our result-
ing clusters were not driven by any single individual.

Based on the expression of known marker genes, we 
identified lymphocyte lineages, including two NK cell 
subpopulations (NK1 and NK2), NKT cells, four T cell 
subpopulations (T1, T2, T3, and T4), and two B cell 
subpopulations (B1 and B2) (Additional file  2: Fig. S2E 
and Additional file  1: Table  S2). Among the 9 immune 
cell subpopulations defined in our scRNA-seq data, we 
found that the proportion of NK2 cells among total lym-
phocytes was 1.89-fold higher in the elderly than in the 
young individuals; this was the subpopulation exhibiting 
the most dramatic enrichment in the distribution in the 
elderly individuals (Fig.  1B). We also downloaded bulk 
RNA-seq data for peripheral blood mononuclear cells 
[32] (PBMCs) from young (n = 10) and elderly (n = 10) 
individuals and used the signature genes identified in our 

single-cell analysis to assess the composition of immune 
cell subpopulations in this dataset (see the “Methods” 
section and Additional file 1: Table S3). As in our scRNA-
seq data, we again found that the NK2 subpopulation dis-
played the largest distribution change between the young 
and elderly individuals (P <  10−4, two-sided Student’s 
t-tests) (Fig. 1C). These results indicate that the NK2 sub-
population may represent an age-related NK subpopula-
tion in humans.

NKG2C+CD122low NK2 cells increase with ageing and have 
a memory‑like phenotype
We next assessed differentially expressed genes (DEGs) 
between NK1 and NK2 cells in our scRNA-seq data 
(Fig.  1D and Additional file  1: Table  S4) and noticed 
that NK2 cells showed reduced expression levels of 
genes including FCER1G (FcεRγ), SH2D1B (EAT-2), 
and ZBTB16 (PLZF) and elevated expression of KLRC2 
(NKG2C), among others, compared with NK1 cells 
(Fig. 1E). Since it has been reported that reduced expres-
sion of FcɛRγ, PLZF, and EAT-2 and increased expression 
of NKG2C correlate with a memory NK cell phenotype 
[37, 38], we considered the NK2 subpopulation to be 
phenotypically memory-like NK cells.

We further found two surface marker genes, IL2RB 
(also known as CD122) and KLRC2 (NKG2C), which 
can be used to distinguish the NK1 and NK2 sub-
populations (Fig.  1E). Using flow cytometry, we 
confirmed the existence of these two NK cell sub-
populations within the  Lin-CD7+ NK cell population 
in the human blood and characterized NK1 cells as 
 NKG2C-CD122high and NK2 cells as  NKG2C+CD122low 
(Fig.  1F). Both the two NK cell populations showed 
high expression (> 95%) of NK-defining surface mol-
ecules, including CD56 (Additional file  2: Fig. S3A-
D), CD16 (Additional file  2: Fig. S3E-H), and NKp80 
(Additional file  2: Fig. S3I-L). We then confirmed 

(See figure on next page.)
Fig. 1 Ageing leads to a marked increase in the proportion of memory-like NK2 cells among total blood lymphocytes. A t-SNE representations of 
the integrated single-cell transcriptomes of 11,279 PBMCs, with 4930 cells from the 4 young individuals (ages 21–28 years) and 6349 cells from the 
4 elderly individuals (ages 65–68 years). Cells are coloured by cell type identity. Each dot represents a single cell. B Dot plot showing the  log2 (odds 
ratio) of the comparison between the cell proportions of each cell cluster in the young and elderly samples. C Scatterplot showing the logarithmic 
ratio between the estimated frequencies of each of the 9 cell clusters in young individuals (n = 10) and those in elderly individuals (n = 10) from 
bulk RNA-seq datasets (GEO103232). D Heatmap showing the top 30 differentially expressed genes for NK1 and NK2 cells from young and elderly 
individuals. E Violin plot showing the gene expression in NK1 and NK2 cells. F FACS staining strategy for NK1  (Lin-CD7+  NKG2C−CD122high) and 
NK2 cells  (Lin−CD7+  NKG2C+CD122low) from young (top) and elderly (bottom) individuals. G Bar graphs showing the proportions of NK2 cells 
in lymphocytes (left) and NK2 cells in NK cells (right) from young (n = 35) and elderly (n = 27) individuals. H Gene Ontology (GO) enrichment 
analysis of the differentially expressed genes of NK2 cells from young individuals and those from elderly individuals. The colour indicates the -log10 
(P-value) enrichment for each GO term. I Flow cytometry analysis of IFN-γ in NK2 cells from young and elderly individuals with or without IFN-α 
stimulation in vitro. J Bar graphs displaying the frequencies of IFN-γ+ in the NK2 subpopulation from young (n = 13) and elderly (n = 15) individuals 
with or without IFN-α stimulation in vitro. K Flow cytometry analysis of CD107a in NK2 cells from young and elderly individuals with or without 
IFN-α stimulation in vitro. L Bar graphs displaying the frequencies of  CD107a+ in the NK2 subpopulation from young (n = 8) and elderly (n = 9) 
individuals with or without IFN-α stimulation in vitro. The error bars represent the standard deviation (SD). *P < 0.05, **P < 0.01, ****P < 0.0001. 
P-values were obtained with two-sided Student’s t-tests. The results are representative of at least three independent experiment
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in peripheral blood samples from 35 young and 27 
elderly healthy donors that the percentages of NK2 
cells  (NKG2C+CD122low) among total lymphocytes 
and among NK cells were significantly higher in the 
elderly than in the young individuals (Fig. 1G); the per-
centages of NK1 cells  (NKG2C−CD122high) showed the 
opposite trend (Additional file 2: Fig. S4A, B).

The expansion of adaptive or memory-like NK cell 
subsets has been observed in association with the 
CMV serostatus [39–43]. Therefore, we compared the 
proportion of  NKG2C+CD122low memory-like NK2 
cells among total blood lymphocytes and NK cells of 
CMV-seronegative (CMV−) and CMV-seropositive 
(CMV+) donors (Additional file 2: Fig. S5A-C). Indeed, 

Fig. 1 (See legend on previous page.)
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 NKG2C+CD122low memory-like NK2 cells were detected 
more reliably in the blood of CMV+ adult donors (~ 19% 
in NK cells) than that in CMV− adult donors (~ 5% in 
NK cells), despite the non-significant differences in the 
subset distribution of NK cells in the young individuals 
(Additional file 2: Fig. S5A). It is worth mentioning that 
the presence of  NKG2C+CD122low memory-like NK2 
cells was correlated with CMV seropositivity, but not all 
CMV-seropositive donors had detectable (at least by flow 
cytometry analysis) memory-like NK2 cell subpopula-
tions (Additional file  2: Fig. S5B, C). These results were 
consistent with those of previous studies showing that 
not all CMV+ individuals have circulating memory NK 
cells [37, 44].

Intriguingly, we further confirmed in peripheral blood 
samples from 35 young and 27 elderly healthy donors 
that the percentages of  NKG2C+CD122low memory-like 
NK2 cells among total lymphocytes and among NK cells 
were significantly higher in the CMV+ elderly (~ 40% in 
NK cells) than in the CMV+ young individuals (~ 19% 
in NK cells) (Additional file 2: Fig. S5B, C). These results 
suggest a memory-like NK subpopulation exhibiting an 
age-related increase (considering CMV serostatus), as 
measured by scRNA-seq and supported by independent 
flow cytometry results.

Gene Ontology (GO) analysis indicated that compared 
to NK1 cells, NK2 cells showed enrichment for genes 
related to lymphocyte activation in our scRNA-seq data-
set (Additional file 2: Fig. S6A). We further found that the 
DEGs of NK2 cells from elderly individuals, compared to 
young individuals, were enriched for functional annota-
tions related to interferon alpha/beta signalling (Fig. 1H 
and Additional file  1: Table  S5). NK cell effector func-
tions are mediated by CD107a expression and IFN-γ 
production [45]. We subsequently examined peripheral 
blood samples from an independent cohort of young 
and elderly individuals using flow cytometry to detect 
the secretion of IFN-γ and CD107a in NK1 or NK2 cells 
during in  vitro IFN-α stimulation. Although there were 
no significant differences in the secretion of IFN-γ and 
CD107a by NK1 cells when comparing elderly individuals 
with young individuals upon IFN-α stimulation (Addi-
tional file  2: Fig. S6B-E), we found significantly higher 
IFN-γ and CD107a levels in NK2 cells from elderly indi-
viduals than in those from young individuals following 
in vitro stimulation with IFN-α (Fig. 1I–L and Additional 
file 1: Table S1).

We also examined the peripheral blood samples from 
young and elderly individuals using flow cytometry to 
detect the production of IFN-γ and CD107a in NK1 or 
NK2 cells upon co-stimulation with interleukin (IL)-12 
and IL-15. In young individuals, we found that mem-
ory-like NK2 cells displayed decreased responsiveness 

to IL-12+IL-15 stimulation compared to non-memory-
like NK1 cells, as shown by the fact that IL-12+IL-15 
induced significantly higher both IFN-γ (Additional 
file  2: Fig. S7A-C) and CD107a (Additional file  2: Fig. 
S7D-F) production by NK1 cells than that induced 
by NK2 cells from young individuals, which is in line 
with the findings of a previous report [37]. However, in 
elderly individuals, the responsiveness to IL-12+IL-15 
co-stimulation appeared to be similar between mem-
ory-like NK2 cells and non-memory-like NK1 cells, 
because there were no significant differences in the 
production of IFN-γ and CD107a between NK2 and 
NK1 cells from elderly individuals (Additional file  2: 
Fig. S7A-F).

Next, we assessed the functional differences in NK1 
and NK2 cells after interaction with classical NK cell 
targets (K562 cell line). We found that there were no 
significant differences in the production of IFN-γ and 
CD107a in NK1 cells upon K562 stimulation between 
young and elderly individuals (Additional file  2: Fig. 
S8A-D). Although slightly but significantly higher 
IFN-γ levels in NK2 cells from elderly individuals than 
in those from young individuals following in  vitro 
stimulation with K562 (Additional file  2: Fig. S8E, F), 
no significant difference in the production of CD107a 
was detected in NK2 cells after interaction with K562 
cells between young and elderly individuals (Additional 
file  2: Fig. S8G, H). These results indicated that age-
related changes in human NK cell functionality may not 
be related to target cell-mediated killing function, but 
instead to proinflammatory cytokine secretion and type 
I interferon response status.

Previous studies have reported age-related impair-
ment in IL-2 signalling in NK cells from elderly indi-
viduals [46, 47]; we therefore examined the effects 
of IL-2 on the distinct NK cell population. No sig-
nificant difference in the production of CD107a and 
IFN-γ was detected upon IL-2 stimulation of NK1 cells 
from elderly individuals (Additional file  2: Fig. S9A-
D). However, the response to IL-2 in NK2 cells from 
elderly individuals was found to be impaired when 
IFN-γ was considered (Additional file  2: Fig. S9E, F), 
whereas CD107a production was not significantly 
affected (Additional file  2: Fig. S9G, H). These results 
provided additional support for the conclusion that 
 NKG2C+CD122low memory-like NK2 cells are age-
related NK cells.

Taken together, our findings are in line with previous 
studies reporting that exposure of NK cells to a com-
bination of IL-12 and IL-15 results in memory-like cell 
behaviours in the absence of antigen, characterized by 
enhanced effector functions and responses when they 
are restimulated with cytokines [9, 48]. These findings 
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further support the idea that NK2 cells are phenotypi-
cally memory-like NK cells.

ScRNA‑seq of human blood NK cells identifies a unique 
subset of memory‑like NK2.1 cells that is enriched 
in elderly individuals
To determine whether additional cellular diversity exists 
and gain deeper insights into the age-related functional 
divergence of NK cells, we conducted 10X single-cell 
transcriptome sequencing on purified NK cells from the 
same cohort of 4 young and 4 elderly healthy individu-
als examined above (Fig. 2A). We sorted  Lin−CD7+ NK 
cells among lymphocytes to obtain cell populations cov-
ering all known developmental stages for NK cells and 
for type 1 innate lymphoid cells (ILCs) [15, 38]. After QC 
processing, we obtained a total of 12,234 high-quality 
NK cells, of which 5501 cells were from young individu-
als and 6733 were from elderly individuals (Additional 
file 2: Fig. S10A, B). We used Seurat [28] (version 3.2.2) 
to integrate the young and elderly samples and identi-
fied 6 NK cell subsets (namely, NK1.1, NK1.2, NK2.1, 
NK2.2, NK2.3, and NK2.4 cells), which were repre-
sented using uniform manifold approximation and pro-
jection (UMAP) (Fig.  2B). We found that compared to 
both NK1.1 and NK1.2 cells, NK2.1, NK2.2, NK2.3, and 
NK2.4 cells all exhibited low expression of genes, includ-
ing FCER1G (FcεRγ), SH2D1B (EAT-2), and ZBTB16 
(PLZF), and high expression of KLRC2 (Fig.  2C and 
Additional file 2: Fig. S10C). This expression pattern cor-
relates with a memory NK cell phenotype, suggesting 
that NK2.1, NK2.2, NK2.3, and NK2.4 cells are pheno-
typically memory-like NK cells.

We then characterized the potential functional annota-
tions of these memory-like NK cell subsets. GO analysis 
of subset-defining DEGs (e.g. NK2.1 vs. the other NK cell 
subsets) among these memory-like NK cell subsets indi-
cated that the upregulated DEGs of NK2.1 cells exhibited 
enrichment for interferon alpha/beta signalling, with high 
expression levels of genes including IL32, IFI6, ISG15, 
and IFI44L. The DEGs of NK2.2 cells were enriched for 
functional annotations related to ribosome assembly, 
with high expression of genes including RPS26, RPS18, 
and RPL3. The DEGs of NK2.3 cells showed enrich-
ment for antigen processing and presentation, and the 
highly expressed genes included CD74, HLA-DPB1, and 
HLA-DAP1 (Fig.  2D, E and Additional file  1: Table  S6). 
Although we performed scRNA-seq analysis using sorted 
 Lin−CD7+ NK cells and excluded CD3 expression at the 
protein level, NK2.4 cells still showed CD3D and CD3G 
expression at the mRNA level (Fig.  2D and Additional 
file  2: Fig. S10D). Therefore, we speculate that this cell 
subset may correspond to previously described activated 
NKT cells with low expression of the TCR complex [49].

Among the 6 NK cell subsets defined in this scRNA-
seq data, we found that the proportion of NK2.1 cells 
among total NK cells was 1.95-fold higher in the elderly 
than in the young individuals; this was the subset exhibit-
ing the most dramatic change in distribution between the 
two age groups (Fig. 2F, G). We next performed pairwise 
comparisons of the NK cell subsets from elderly individu-
als and the corresponding cell subsets from young indi-
viduals, which identified a total of 253 DEGs (Fig.  2H). 
When assessing the number of DEGs for each of the NK 
cell subsets, there were clearly more DEGs in NK2.1 cells 
than in the other subsets (NK1.1 cells, NK1.2 cells, NK2.2 
cells, and NK2.3 cells) (Fig.  2H), suggesting that NK2.1 
cells showed the largest transcriptomic changes among 
NK cells during ageing.

To more intuitively quantify the connectivity of parti-
tions (the NK1.1, NK1.2, NK2.1, NK2.2, and NK2.3 cell 
subsets) of the single-cell graph, partition-based graphi-
cal abstraction (PAGA) [33] was used to generate a much 
simpler abstracted graph (PAGA graph) of partitions, 
in which edge weights represent confidence in the pres-
ence of connections. We noticed that the connectivity of 
neighbourhoods appeared to be reduced among NK2.1, 
NK2.2, and NK2.3 cells from the elderly individuals com-
pared to those from the young individuals (Fig. 2I). Sum-
marizing the above findings, we determined the NK cell 
hierarchies in the peripheral blood in the context of age-
ing and identified a unique subset of memory-like NK2.1 
cells that is enriched in elderly individuals.

NK2.1 cells in elderly individuals represent a terminal stage 
of human NK cell differentiation
The impacts of ageing on the development and matura-
tion of NK cell subsets are not well understood in humans 
[44]. We applied PAGA [33], a high-resolution pseudo-
time prediction algorithm, to construct differentiation 
potential trajectories for NK2.1, NK2.2, and NK2.3 cells 
from young and elderly individuals. Several experimen-
tal evidences have shown that NK cell development pro-
ceeds from a  CD56bright to  CD56dim phenotype [50, 51]. 
We then tried to define the starting point of the putative 
developmental trajectory and identified that the NK1.1 
cells showed enrichment of gene expression for the 
 CD56bright NK cell signature genes, whereas the NK2.1, 
NK2.2, and NK2.3 cells were enriched for  CD56dim NK 
cell signature genes (Additional file 1: Table S7 and Addi-
tional file  2: Fig. S11A, B). The NK1.1  (CD56bright-like 
NK) subset was, therefore, defined as the starting point of 
the putative developmental trajectory. Pseudotime analy-
sis with the PAGA algorithm indicated that NK2.1 and 
NK2.3 cells were distributed on the two branches of the 
trajectory (Fig. 3A, B). In addition, we found that NK2.1 
cells in elderly individuals were projected at the end of 
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Fig. 2 ScRNA-seq analysis of aged human blood NK cells reveals age-associated alterations in memory-like NK cells. A Peripheral NK cells 
 (Lin−CD7+) were sorted from young and elderly individuals and analysed with the 10X Genomics single-cell sequencing platform. B UMAP 
projections of 12,234 NK cells. The different colours represent the 6 NK cell subpopulations (left). Each dot represents a single cell. C, Violin plot 
showing the gene expression of IL2RB, FCER1G, and KLRC2 in each cell subpopulation. D Heatmap showing the differentially expressed genes 
among the NK cell subpopulations from young and elderly individuals. E GO enrichment analysis showing the terms of the differentially expressed 
genes for the indicated NK cell subpopulations from young and elderly individuals. The colour indicates the -log10 (P-value) enrichment for each 
GO term. F UMAP projections of 11,338 NK cells, with 5154 from young individuals (middle) and 6184 cells from elderly individuals (right). Each dot 
represents a single cell. G Dot plot showing the proportions of the NK cell subpopulations in an elder vs. young comparison. H Dot plot showing 
a comparison of the number of differentially expressed genes in the indicated NK cell subpopulations in an elderly vs. young comparison. I PAGA 
graph showing the connectivity between the NK subgroups in the young and elderly groups. Each of the coloured nodes is an NK subpopulation, 
and the node size is proportional to the number of cells in the subpopulation. The thickness of the edge shows the strength of the connectivity 
between subpopulations. DEGs, differentially expressed genes
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Fig. 3 Pseudotime analysis reveals the distinct trajectories of memory-like NK cell differentiation during ageing. A–C Trajectories predicted using 
the PAGA algorithm for NK1.1, NK2.1, NK2.2, and NK2.3 cells from young and elderly individuals. Cells are coloured by NK cell subsets (A), by the 
pseudotime trajectory (B), and by age group (C). D Pie charts showing the composition of NK cell subsets in five bins; each bin was divided 
equally according to the pseudotime of the cells. E Violin plots of the cell pseudotime distribution for each NK cell subset from young and elderly 
individuals. P-values were estimated by Wilcoxon rank-sum test. F The box plot shows the expression of the top 50 age-associated genes (obtained 
from Peters et al. [31]) of NK2.1, NK2.2, and NK2.3 cells from young people and elderly people. P-values were obtained using the Wilcoxon rank-sum 
tests. G Dot plot representing the expression of age-related genes of NK2.1, NK2.2, and NK2.3 cells in the young and elderly groups. The plot shows 
genes expressed by at least 20% of the cells in the subset. The size of the dot represents the fraction of cells expressing the gene, and the colour of 
the dot represents the gene level as a z-score
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one branch along the developmental trajectory (Fig. 3A–
C), suggesting that these cells were in the terminal differ-
entiated state in elderly individuals.

To quantitatively illustrate the time order of the three 
subsets on the pseudotime trajectory, we divided the cells 
into five equal bins along pseudotime. Notably, ~ 95% 
of the NK2.1 cells positioned within the terminal pseu-
dotime bin were from elderly individuals (Fig. 3D, E). At 
minimum, this finding suggests that NK2.1 cells from 
elderly individuals represent a terminal stage of human 
NK cell differentiation. A previous study performed 
a meta-analysis of a large cohort of 14,983 individu-
als and reported the top 50 age-related genes in human 
peripheral blood [31] (Additional file  1: Table  S8). The 
constituent genes of this set are related to biological char-
acteristics of personal health (e.g. blood pressure, cho-
lesterol level, fasting blood sugar, and body mass index). 
Using this gene set for an analysis of each NK2.1, NK2.2, 
and NK2.3 cell subset, we found that the expression of 
age-related genes of the NK2.1 cell subset was apparently 
substantially higher than that of the other two subsets 
(Fig. 3F, G, P = 4.25e−18, Wilcoxon rank-sum test). This 
suggests that NK2.1 cells represent a terminal differentia-
tion state for NK cells.

NK2.1 cells in elderly individuals display a transcriptional 
signature of elevated type I interferon signalling
Transcriptional differences in cells that occur during 
ageing drive altered functions, so we further investi-
gated the age-related transcriptional differences of the 
NK2.1, NK2.2, and NK2.3 cell subsets in the DEG analy-
sis between young and elderly samples. We observed that 
NK2.1 cells from the elderly samples had elevated expres-
sion of interferon signalling pathway genes (e.g. IFI6, 
ISG15) compared to that of NK2.1 cells from the young 
samples (Fig. 4A, B and Additional file 1: Tables S9-S10), 
suggesting that NK2.1 cells may be continuously exposed 
to interferon signals during ageing.

We also explored transcription factors (TFs) in NK 
cells that may regulate ageing-associated transcrip-
tional programmes in NK cells. We used SCENIC [34] 
to predict TFs that may regulate the genes we detected 
as upregulated in NK2.1, NK2.2, and NK2.3 cells from 
elderly or young individuals (Fig.  4C and Additional 

file 2: Fig. S12A). There were 9 SCENIC-predicted TFs—
IRF7, IRF9, STAT1, HMGB2, KLF6, POLR2A, EZH2, 
POU3F1, and KLF10—that appear to affect the observed 
ageing-associated transcriptomic changes in NK2.1 cells 
in elderly individuals (Fig.  4C, D and Additional file  2: 
Fig. S12A, B). IRF7 is a major regulator of type I inter-
feron-dependent immune responses [52]. Notably, the 
mRNA expression level of IRF7 was higher in NK2.1 cells 
from elderly individuals than in NK2.1 cells from young 
individuals (Fig.  4E). Furthermore, SCENIC-predicted 
IRF7 may regulate 70.5% (31/44) of the upregulated 
DEGs in NK2.1 cells in elderly individuals, including the 
type I interferon signal pathway-related genes IFI6, MX1, 
ISG15, IFI44L, and IL32 (Additional file 2: Fig. S13A, B). 
Our finding that IRF7 expression is elevated, in combina-
tion with our detection of the enrichment of its motif, in 
NK2.1 cells from elderly individuals, suggests that this TF 
may transcriptionally regulate ageing-associated activa-
tion of the type I interferon signal transduction pathway.

NK2.1 cells in elderly individuals are predominantly 
 CD52+ NK2 cells, exhibit proinflammatory characteristics, 
and display a type I interferon response state
Our single-cell transcriptome analysis revealed that 
NK2.1 cells accumulated significantly in elderly individu-
als (Fig. 2G). We performed pairwise comparisons among 
NK2.1, NK2.2, and NK2.3 cells and found that NK2.1 
cells had relatively high expression of the CD52 gene 
(Additional file 2: Fig. S14A, B). CD52 has been reported 
as an active target for the management of CMV reactiva-
tion [53]. To validate this as a surface marker for NK2.1 
cells, we analysed blood samples from 35 young and 27 
elderly healthy individuals by flow cytometry with gat-
ing for CD52 and for NKG2C and CD122, memory-like 
NK2 markers identified in our scRNA-seq analysis (Addi-
tional file 2: Fig. S15). Beyond supporting the presence of 
NK2.1 cells (Fig. 5A), this analysis also confirmed that the 
proportion of NK2.1  (CD52+ NK2) cells among NK cells 
or among total lymphocytes was significantly elevated in 
elderly individuals (Fig. 5B, P < 0.0001, Student’s t-tests). 
NK2.1 cells also showed high expression (> 95%) of NK-
defining surface molecules, including CD56 (Additional 
file 2: Fig. S16A, B), CD16 (Additional file 2: Fig. S16C, D), 
and NKp80 (Additional file 2: Fig. S16E, F). In addition, 

Fig. 4 Age-associated transcriptional differences of distinct memory-like NK cell subsets. A Volcano plots of the differentially expressed genes 
of NK2.1 (left), NK2.2 (middle), and NK2.3 cells (right) from comparisons between young and elderly individuals. Each dot represents a gene, 
with significantly upregulated genes (lnFC > 0.25, P <  10−3) in young and elderly individuals coloured blue and red, respectively. B Heatmap of 
the enriched GO terms among the DEGs detected for NK2.1, NK2.2, and NK2.3 cells (elderly vs. young). The colour indicates the -log10 (P-value) 
enrichment for each GO term. P-values were obtained with the Wilcoxon rank-sum tests. C Heatmap of the AUC scores predicted by SCENIC for 
expression regulation by transcription factors (TFs) in NK2.1, NK2.2, and NK2.3 cells from young and elderly individuals. D, E UMAP plots showing 
the AUC of the estimated regulon activity for IRF7, POLR2A, JUN, and JUNB (D) in NK2.1, NK2.2, and NK2.3 cells and the expression of these TFs (E). FC, 
fold change

(See figure on next page.)
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Fig. 4 (See legend on previous page.)
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when taking CMV serostatus into account, we also found 
that the percentages of  CD52+NKG2C+CD122low mem-
ory-like NK2.1 cells among total lymphocytes and among 
NK cells were significantly higher in the CMV+ elderly 
(~ 35% in NK cells) than in the CMV+ young individuals 
(~ 12% in NK cells) (Additional file 2: Fig. S17A, B).

As NK2.1 cells from elderly individuals exhibited 
enrichment of genes related to interferon alpha/beta 
signalling in our scRNA-seq analysis (Fig.  4B), we 
investigated the response sensitivities of NK2.1 cells 
from elderly and young individuals to type I interferon 
stimulation. We analysed the expression levels of IFN-γ 

and CD107a in NK2.1 cells from an independent cohort 
of young and elderly individuals following in vitro stim-
ulation with recombinant human IFN-α (Additional 
file  1: Table  S1). NK2.1 cells from the elderly group 
had significantly higher IFN-γ and CD107a levels than 
NK2.1 cells from the young group (Fig. 5C–F). Further-
more, NK2.1 cells from the elderly individuals appeared 
to be more responsive to type I interferon stimulation 
than young NK2.1 cells, as evidenced by significantly 
increased levels of IFN-γ and CD107a (Fig.  5C–F). In 
sum, these results indicate that a marked increase in the 
proportion of NK2.1 cells—which exhibit proinflam-
matory characteristics and display a type I interferon 

Fig. 5 Age-associated memory-like  CD52+ NK2 cells (NK2.1) exhibit proinflammatory characteristics and display a type I IFN response state. A 
Representative flow cytometry analysis of the percentage of NK2.1 cells within NK2 cells  (Lin−CD7+NKG2C+CD122low) from young (left) and elderly 
(right) individuals. B Bar graphs showing the proportion of NK2.1 cells among NK cells (left) and among lymphocytes (right) from young (n = 35) 
and elderly (n = 27) individuals. C Representative density plots showing the expression of IFN-γ in NK2.1 cells from young and elderly individuals 
with or without IFN-α stimulation in vitro. D Bar graphs displaying the frequencies of IFN-γ+ cells in NK2.1 cells from young (n = 13) and elderly (n 
= 12) individuals with or without IFN-α stimulation in vitro. E Representative density plots showing the expression of CD107a in NK2.1 cells from 
young and elderly individuals with or without IFN-α stimulation in vitro. F Bar graphs displaying the frequencies of  CD107a+ cells in NK2.1 cells from 
young (n = 7) and elderly (n = 7) individuals with or without IFN-α stimulation in vitro
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response state—might represent an immune cell distri-
bution signature for immune ageing.

NK2.1 cells from elderly COVID‑19 patients are enriched 
in type I signalling, which is positively correlated 
with disease severity in COVID‑19
Studies have shown that the risk for severe COVID-19 
illness increases with age [54] and that NK cells undergo 
enhanced effector functional changes in COVID-19 
patients [55]. However, the impacts of ageing on NK 
cell subsets in COVID-19 disease remain unclear. We 
downloaded single-cell RNA-seq datasets [23–25, 56] of 
peripheral immune cells from young (n = 15) and elderly 
(n = 41) COVID-19 patients and from young (n = 12) 
and elderly (n = 6) healthy control individuals. Specifi-
cally, the COVID-19 single-cell datasets included 41 sam-
ples taken from elderly patients with active disease (from 
severe disease, n = 25; from moderate disease, n = 1) and 
during the convalescent phase (from severe disease, n = 
9; from moderate disease, n = 6) and 15 samples taken 
from young patients with active disease (with moderate 
disease, n = 5) and during the convalescent phase (from 
severe disease, n = 2; from moderate disease, n = 8) 
(Fig. 6A and Additional file 1: Table S11).

We then extracted the single-cell transcriptomes of NK 
cells from COVID-19 patients and healthy control indi-
viduals and applied Seurat [28] (version 3.2.2) to inte-
grate the COVID-19 single-cell transcriptomes of NK 
cells with those from healthy control individuals, ena-
bling the analysis of a total of 34,388 NK cells (19,833 
cells from elderly individuals and 14,555 from young 
individuals). We identified 9 NK cell subsets, which were 
represented using UMAP (Fig.  6B); note that by map-
ping our aforementioned NK cell subsets (Fig. 2B) to this 
UMAP, we found that 7 of the 9 subsets were coincident 
with NK cell subsets in the aforementioned single-cell 
analysis, and 2 of the 9 subsets appeared to be COVID-
19-specific NK cells (Fig.  6B, C), albeit with low cell 
numbers (Fig.  6D). We again found that the proportion 
of NK2.1 among total NK cells was higher in the elderly 
than in the young COVID-19 patients and higher in the 
elderly than in the young healthy control individuals 
(Fig. 6E). Previous studies showed that the proportion of 
memory NK cells from COVID-19 patients is elevated 
in severe disease compared to moderate disease [55, 57]. 
Our integrative scRNA-seq data demonstrated that the 
percentage of memory-like NK2 cells among total NK 
cells was increased in elderly patients with severe dis-
ease compared to elderly patients with moderate disease 
(Additional file 2: Fig. S18).

Differential analysis of each NK cell subset between 
COVID-19 patients and healthy controls showed that 
there were few DEGs (n = 75) for NK cell subsets from 

young samples but many DEGs (n = 357) for NK cell 
subsets from elderly samples. Furthermore, we identi-
fied NK2.1 cells that showed the largest number of DEGs 
among all NK cell clusters in a comparison of elderly 
COVID-19 patients and elderly healthy controls (Fig. 6F 
and Additional file  2: Fig. S19), suggesting disease pro-
gression-related functions in NK2.1 cells from elderly 
COVID-19 patients. We also compared the predicted 
functions of NK2.1 cells in COVID-19 patients compared 
with healthy controls, and GO analysis indicated that the 
DEGs of NK2.1 cells from elderly COVID-19 patients, 
compared to elderly healthy controls, were enriched for 
functional annotations related to response to type I inter-
feron (Fig. 6G, H and Additional file 1: Table S12; Addi-
tional file  2: Fig. S20A and Additional file  1: Table  S13, 
P = 8.20e−35, Wilcoxon rank-sum test). We further 
found that age has a strong influence on the expression 
of genes related to type I interferon responses in COVID-
19 patients (Additional file  2: Fig. S20B). Specifically, 
the NK2.1 cells of elderly patients have high expression 
of genes with functional annotations related to response 
to type I interferon (e.g. ISG15, ISG20, etc.) compared 
to that of NK2.1 cells from young COVID-19 patients 
(Fig. 6H, P = 1.11e−36, Wilcoxon rank-sum test).

Because type I interferon molecules are known to 
exhibit a wide range of antiviral activities and given 
the numerous reports of more severe type I interferon 
responses in patients with severe COVID-19 [58–60], 
multiple clinical trials have used such molecules as poten-
tial therapeutic agents to treat COVID-19. We observed 
elevated expression of genes involved in response to 
type I interferon in NK2.1 cells from elderly COVID-19 
patients in the severe stage compared with those from 
elderly COVID-19 patients in the moderate stage (Addi-
tional file 2: Fig. S20B, C). In contrast, the expression of 
genes involved in response to type I interferon in NK2.1 
cells from young COVID-19 patients in the severe stage 
was significantly lower than that in NK2.1 cells from 
young COVID-19 patients in the moderate stage (Addi-
tional file  2: Fig. S20B, C). These contrasting trends 
suggest that the effect of type I interferon signalling on 
NK2.1 cells might differ for COVID-19 patients in an 
age-related manner. Together, these results indicate that 
NK2.1 cells of elderly COVID-19 patients showed enrich-
ment of type I interferon responses which was positively 
correlated with the disease severity.

Discussion
In the present study, we assessed age-related changes in 
human NK cell subpopulations at single-cell resolution. 
We uncovered a subpopulation of memory-like NK2 cells 
that exhibited the largest distribution change between 
elderly and young individuals among 9 blood immune 
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Fig. 6 Integrative analyses of a large-cohort COVID-19 single-cell transcriptomic dataset with our single-cell datasets reveal that NK2.1 cells from 
elderly COVID-19 patients are enriched for type I interferon signalling which correlates with increased disease severity in COVID-19. A Flowchart 
showing the integrative analysis of the scRNA-seq datasets of peripheral blood NK cells obtained from healthy controls (HC, n = 18) and COVID-19 
patients (n = 56) [23, 25, 56]. B, C UMAP projections of the integrated single-cell transcriptomes of 34,388 NK cells, with 17,748 cells from healthy 
control individuals and 16,640 cells from COVID-19 patients. Cells are coloured by subset identity (B), and the NK cell subsets were defined as 
in Fig. 2B (C). Each dot represents a single cell. D Bar graph showing the proportion of each NK cell subset in all cells. E Bar graph showing the 
proportion of cells derived from young or elderly samples for each of the NK cell subsets. F Histograms showing the number of DEGs for each 
NK cell subset in the total individuals (top), the elderly individuals (middle), and the young individuals (bottom) between COVID-19 patients and 
healthy controls. G Dot plots of enriched GO terms of differentially expressed genes among NK2.1 cells between elderly COVID-19 patients and 
elderly healthy control individuals. The colour of the dot indicates -log10 (P-value) enrichment for each GO term, and the size of the dot indicates the 
number of differentially expressed genes contained within each enriched GO term. H Box plots of the average expression of genes involved in the 
signalling pathway “response to type I interferon” in NK2.1 cells from young healthy control individuals, from elderly healthy control individuals, from 
young COVID-19 patients, and from elderly COVID-19 patients
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cell subpopulations. In particular, we discovered a unique 
NK subset of NK2.1 cells, which were predominantly 
 CD52+ NK2 cells, accumulated with age and exhibited 
proinflammatory characteristics. In addition, NK2.1 
cells in elderly individuals displayed elevated sensitiv-
ity to type I interferon stimulation in  vitro. The poten-
tial impact of this cell population on infectious diseases 
in elderly individuals was evident in our observation that 
NK2.1 cells from elderly COVID-19 patients are enriched 
in type I signalling, which we found to be positively cor-
related with disease severity in COVID-19. Several 
scRNA-seq studies have been performed in human NK 
cells, including those from the tonsils [61], bone marrow 
[38, 62], spleen [63], and blood [38]. However, to the best 
of our knowledge, unbiased scRNA-seq analyses reveal-
ing age-related changes in human NK cells have not been 
reported. Although efforts have been made to investi-
gate age-related changes in NK cells, such studies were 
mostly performed using flow cytometry and have been 
interpreted in the conceptual framework of traditional 
 CD56dim NK cells and  CD56bright NK cells.

Our initial scRNA-seq analysis of lymphocytes from 
young and aged human blood in the present study iden-
tified an NK2 subpopulation that exhibits the largest 
distribution change between elderly and young individu-
als among 9 blood immune cell subpopulations. This 
NK2 subpopulation featured high expression of NKG2C 
KLRC2) and low expression of PLZF (PLZF), FcεRγ 
(FCER1G), EAT-2 (SH2D1B), and SYK (SYK), which are 
used as markers for memory NK cells in the context of 
human cytomegalovirus (HCMV) infection [37, 64]. 
Interestingly, Yang et al. [38] recently reported an “mem-
ory-like” NK cell subpopulation in human bone marrow, 
with memory transcriptional signatures similar to those 
of the NK2 cells we identified here, although they did not 
find this NK subpopulation in their human blood dataset.

A previous study has investigated age-related changes 
in NK cells [65]. Some  CD56dimCD57+ NK cell subsets 
increased with age, whereas  CD56dimNKG2C+ did not 
[21, 65–68]. Recently, a longitudinal study demonstrated 
that the  CD57+NKG2C+CD56dim NK cells may be driven 
less by chronological ageing, and far more by CMV infec-
tion [69]. In the present study, we identified memory-like 
 NKG2C+CD122low NK2 cells that increased with ageing 
(considering CMV serostatus), as measured by scRNA-
seq and supported by independent flow cytometry 
results. In humans, the expansion of memory-like NK 
cells has been linked to CMV serostatus [39–42]. So far, 
it has proved difficult to disentangle the effects of CMV 
infection and the ageing process that makes CMV infec-
tion one of the driving forces of so-called inflammag-
ing. However, it may in fact be primarily associated with 
CMV serostatus and secondarily with age, linking the 

increased frequency of CMV infection to age. Whether 
ageing, along with CMV seropositivity, contributes to a 
marked increase in the proportion of  NKG2C+CD122low 
memory-like NK cells remains to be investigated.

Our analysis of scRNA-seq data collected for purified 
 Lin−CD7+ NK cells from young and aged human blood 
further identified a unique subset of memory-like NK2.1 
cells. Notably, NK2.1 cells accumulated with age. Intrigu-
ingly, these memory-like NK2.1 cells from elderly indi-
viduals had higher IFN-γ and CD107a levels than NK2.1 
cells from young individuals following in  vitro stimu-
lation with IFN-α. This is consistent with the previous 
observation that persistent memory-like NK populations 
show high IFN- γ production and potent cytotoxic activ-
ity upon ex vivo restimulation [6]. Furthermore, a recent 
study [70] demonstrated that compared to “younger” 
NK cells, “older” mouse NK cells exhibited more potent 
IFN-γ production upon exposure to activating stimuli, 
as well as more robust adaptive responses during CMV 
infection. Consistently, we showed here that memory-
like NK2.1 cells from elderly individuals appeared to be 
more responsive to type I interferon stimulation than 
NK2.1 cells from young individuals, as evidenced by 
significantly increased levels of cytokines (IFN-γ and 
CD107a). This implies potential age-related impacts on 
the functions of memory NK cell-mediated responses. It 
is well known that a main feature of the ageing process is 
chronic low-grade inflammation, with elevated levels of 
proinflammatory cytokines; this is collectively referred 
to as “immune ageing” [4, 71]. Since memory-like NK2.1 
cells accumulate with age and exhibit proinflammatory 
characteristics, it is plausible that a marked increase in 
NK2.1 cells can be understood as a signature of immune 
ageing in humans. Therefore, our study provides impor-
tant insights into how ageing influences human NK 
cells, represents a conceptual advance in immune age-
ing research and helps drive investigations into immune 
ageing.

It has been shown that type I IFNs positively regulate 
NK cell activation and cytotoxicity, as well as matura-
tion and memory, and these effects are induced through 
interferon-stimulating genes (ISGs) [72]. It has also been 
shown that blocking type I IFN signals can partially 
restore cognitive deficits caused by ageing [73]. Strik-
ingly, we found that aged memory-like NK2.1 cells exhib-
ited enrichment for genes related to type I IFN signalling, 
and these cells had 9 high-confidence regulons that were 
predicted to be governed by TFs, including the IRF7, 
IRF9, and STAT1, proteins, which were each previously 
shown to function as key regulators of type I IFN signal-
ling [74]. This is in line with the established dual-phase 
programme that is coordinately regulated by the TFs IRF 
and STAT, specifically IRF3/IRF7 for IFN production [74] 
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and STAT1-STAT2-IRF9 for ISG expression [75]. Future 
studies can dissect the mechanism(s) underlying the 
apparent age-related accumulation of this unique mem-
ory-like NK2.1 subset.

The ongoing COVID-19 pandemic has infected over 
100 million people, and there have been more than 2 
million deaths to date [76]. COVID-19 patients display 
high levels of inflammatory cytokines and chemokines 
[77], especially severe-stage patients, who are known to 
exhibit elevated expression of TNFα, IL-1, IL-6, IL-18, 
IL-8, IL-10, MCP-1, and MIP-1α, supporting that idea 
systemic inflammation and infection is evident in the 
peripheral blood of COVID-19 patients. Additionally, 
elderly adults are at higher risk for severe illness from 
COVID-19, but the underlying immunopathogenic 
mechanisms remain unclear. Recently, several stud-
ies have shed light on the role of NK cells in COVID-19 
disease progression [25, 55–57, 78]. A detailed map of 
NK cell activation in COVID-19 disease revealed that 
 CD56bright NK cell arming is associated with the disease 
severity in COVID-19 [55, 57]. In addition, a recent study 
showed that NK cells in early severe COVID-19 display 
signs of a strong IFN-α response with increased expres-
sion of IFN-stimulated genes and genes related to IFN-α 
signalling [56]. In the present study, considering both age 
and disease status, we performed an integrative analysis 
of a large-cohort COVID-19 single-cell transcriptomic 
dataset with our single-cell datasets [23, 25, 56]. We 
analysed a total of 34,388 NK cells (19,833 cells from 47 
elderly individuals and 14,555 cells from 27 young indi-
viduals), which also allowed for cross-validation of our 
findings. Integrating our findings with earlier reports 
[23, 25, 56], we further revealed that aged NK2.1 cells are 
enriched for type I interferon signalling molecules; we 
found that this effect is positively associated with disease 
severity in elderly COVID-19 patients. These data are in 
line with previous observations that patients with more 
severe COVID-19 disease status exhibit elevated activa-
tion of type 1 interferon signalling [56, 59, 79].

The role of type I interferons in the pathogenesis or pro-
tection in severe vs. moderate COVID-19 is still some-
what unclear, as some studies have reported impaired 
type I interferon activity and inflammatory responses in 
severe COVID-19 patients [80, 81]. Whether the proin-
flammatory features of NK2.1 cells, particularly type I 
interferon signalling in NK2.1 cells, can contribute to the 
pathogenesis of COVID-19 remains to be investigated.

Overall, our study revealed that a marked increase in 
memory-like NK cells, particularly NK2.1 cells, is a sig-
nature of immune ageing in humans. This memory-like 
NK2.1 subset represents a potential target for the devel-
opment of immunotherapies to treat infectious dis-
eases and for addressing age-related dysfunctions of the 

immune system. Our single-cell transcriptomic data can 
serve as a resource for understanding human NK cell 
biology during ageing and can help drive investigations 
into immune ageing.

Conclusions
We performed a detailed characterization of aged human 
NK cells using single-cell RNA sequencing, together 
with functional studies. We identified a unique memory-
like NK cell subset that accumulated with ageing and 
displayed a type I interferon response state. We further 
performed integrative analyses of a large cohort COVID-
19 single-cell transcriptomic dataset with our single-cell 
datasets and revealed that the type I interferon-respon-
sive memory-like NK cell subset positively correlated 
with disease severity in COVID-19. These data provide 
important insights into how ageing influences human NK 
cells and help drive investigations into immune ageing.
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