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Abstract
Maintaining homeostasis of the decidual immune microenvironment at the maternal–fetal interface is essential for
placentation and reproductive success. Although distinct decidual immune cell subpopulations have been identified
under normal conditions, systematic understanding of the spectrum and heterogeneity of leukocytes under recurrent
miscarriage in human deciduas remains unclear. To address this, we profiled the respective transcriptomes of 18,646
primary human decidual immune cells isolated from patients with recurrent pregnancy loss (RPL) and healthy controls
at single-cell resolution. We discovered dramatic differential distributions of immune cell subsets in RPL patients
compared with the normal decidual immune microenvironment. Furthermore, we found a subset of decidual natural
killer (NK) cells that support embryo growth were diminished in proportion due to abnormal NK cell development in
RPL patients. We also elucidated the altered cellular interactions between the decidual immune cell subsets in the
microenvironment and those of the immune cells with stromal cells and extravillous trophoblast under disease state.
These results provided deeper insights into the RPL decidual immune microenvironment disorder that are potentially
applicable to improve the diagnosis and therapeutics of this disease.

Introduction
Recurrent pregnancy loss (RPL), defined as loss of two

or more consecutive pregnancies, affects up to 5% of
women trying to conceive1,2. Known causes of RPL
include genetic abnormalities, endocrine disorders, uter-
ine malformations, as well as other influencing factors
such as thrombophilia and maternal infections3. The
etiology of RPL remains unknown in about 50% of cases.
Studies have shown that abnormalities of the decidual

immune microenvironment might associate with the
pathogenesis of RPL4. However, the underlying mechan-
isms through which dysregulation of the decidual immune
microenvironment causes RPL remain unclear.
The decidual immune cells at the maternal–fetal interface

are mainly composed of natural killer (NK) cells, macro-
phages, T cells, and a variety of minority cell types (e.g.,
dendritic cells, NKT cells, etc.)5, and their proportion
changes with gestational age6. Decidual NK (dNK) cells
represent the largest population, comprising about 50–70%
of the maternal immune cells during the first trimester of
pregnancy7. Studies have shown that dNK cells exert mul-
tiple functions to maintain homeostasis of the decidual
microenvironment. For instance, dNK cells can modulate
trophoblast invasion8, promote fetal growth9, and regulate
immune tolerance10. These cells can also exert effector
functions upon exposure to exogenous stress11.
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Decidual macrophages comprise approximately 10–20%
of decidual leukocytes during the first trimester of
pregnancy and have been reported to function as anti-
inflammatory cells with M2-like phenotypes12–14. Moreover,
crosstalk between decidual macrophages and other cells
of the decidual immune microenvironment has been
reported to maintain overall immune homeostasis at the
maternal–fetal interface15,16. Decidual macrophages are
known to have many functions similar to those of dNK
cells, including remodeling of spiral arteries, trophoblast
invasion, promotion of angiogenesis, hindering T cell acti-
vation, and mediating canonical responses to antimicrobial
infections16–18. Decidual T cells also have functional roles in
both normal and pathological pregnancies19. These maternal
leukocytes, together with decidual stromal cells and extra-
villous trophoblasts (EVTs), interact with each other to form
a highly complex immune microenvironment5,20.
A number of recent studies have employed single-cell

RNA sequencing (scRNA-seq) technology to interrogate
the cellular composition and inter-cellular commu-
nication events that occur at the maternal–fetal inter-
face6,21–24. Building from these seminal studies of global
cell types, subsequent focus studies of immune cell
subsets have been conducted for normal decidua25–27.
These foundational studies have defined the composi-
tion and distribution of various immune cell types of the
immune microenvironment of healthy decidua at high
resolution. However, the lack of similar high-resolution
data for a dysregulated decidua context—as for example
in RPL patients—has limited data-driven hypothesis
generation about any immune-related patho-mechan-
isms underlying failed pregnancies or insights which
may more fully elucidate the etiology of recurrent
miscarriage.
Here, we profiled the decidual immune cells present at the

maternal–fetal interface in RPL patients and healthy con-
trols using scRNA-seq. We found dramatic differential dis-
tributions of decidual immune cell subsets in RPL patients.
Furthermore, we demonstrated a subset of dNK cells that
support embryo growth was reduced due to abnormal NK
cell development in disease state revealed by Palantir28. We
also discovered that macrophage subsets mediated inflam-
matory T cell chemotaxis in patients. Finally, we constructed
a disease-specific interaction network between the major cell
types in the decidual immune microenvironment. Our
results provide guidance for RPL diagnosis and therapeutics
in both cellular and molecular perspectives.

Results
An atlas of decidual immune cells in RPL patients
We obtained 24 human first-trimester decidual samples

with normal embryonic karyotypes: 9 from RPL patients
and 15 from healthy controls. Specifically, the patients
and healthy controls were aged 21–39 years. The mean

gestational ages are 7.24 weeks in controls and 8.50 weeks
in RPL patients. Four of nine RPL patients experienced
three pregnancy loss and five experienced two. The
patients were advised to obtain an induced abortion after
a diagnosis of pregnancy loss (see Materials and methods,
Supplementary Table S1). The decidual sample tissues
were digested into single-cell suspensions, and the CD45+

leukocytes were then sorted and subjected to scRNA-seq
using the 10× platform (Fig. 1a). Low-quality cells were
then filtered after rigorous quality control (QC) definition
(Supplementary Fig. S1a–d), and we retained a total of
18,646 high-quality CD45+ single transcriptomes. Of
these, 8504 cells were originated from RPL patients and
10,142 cells from normal controls.
We then applied Seurat29 to normalize and cluster the

gene expression matrix and identified 11 unique immune
cell subsets, which were visualized via t-distributed sto-
chastic neighbor embedding (t-SNE) (Fig. 1b). We identified
cell lineages, including NK cells, macrophages, T cells,
dendritic cells, NKT cells, and immune progenitor cells
based on the expression of known marker genes (Fig. 1c). To
corroborate our results, we extracted the cells from the
healthy controls and compared their transcriptomes with
the recently reported scRNA-seq profiles from the decidual
immune cells at the maternal–fetal interface25 (Supple-
mentary Fig. S2a, b). The two datasets provided extensive
overlap in cell identities and the cell-type distributions
(Supplementary Fig. S2c, d), suggesting that we have
obtained reliable cell atlas of the decidual immune micro-
environment in RPL patients and healthy controls.
We also used another integration method, Harmony30,

to help confirm the reliability of our cell clustering results
from Seurat and visualized it with UMAP method (Sup-
plementary Fig. S3a, b). We found strong similarities of
the cell clusters processed by Seurat and Harmony
(Supplementary Fig. S3c, d), supporting the robustness of
our cell clustering results.
Our first general investigation of potential differences

between the RPL patients and healthy controls focused on
any divergence in the proportion of major immune cell
types: there was no apparent difference in the ratio of NK
cells, but the RPL patients had decreased macrophage
populations and slightly increased T cell populations
(Fig. 1d). To validate this result, we measured the distribu-
tions of NK, macrophage, and T cells in a larger cohort of
RPL patients (n= 23) and healthy controls (n= 24) using
flow cytometry (Supplementary Table S2). As expected, we
found a slight but not significant increase in the proportion
of NK cells (P= 0.0809), a remarkable and significant
decrease in macrophages (P= 0.0051), and a slight but sig-
nificant increase in T cells (P= 0.0307) (Fig. 1e). Thus, our
scRNA-seq provides a useful atlas for identifying disease-
associated differences and immune cell population diver-
gence at the maternal–fetal interface during early pregnancy.
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A subset of angiogenic dNK cells are decreased in RPL
patients
Since dNK cells are the most abundant cell type in

the decidual immune microenvironment, we initially
explored the dNK cell subsets and their functions at the
maternal–fetal interface. We identified three known

subsets of dNK cells25: CD39+ CD18− CD103− (dNK1),
CD18+ CD103− CD39− (dNK2), and CD18+ CD103+

CD39− (dNK3), as well as a group of proliferating natural
killer cells (dNKp) (Fig. 2a, b; Supplementary Fig. S4a).
Whereas our aforementioned analysis indicated no sig-
nificant differences in the proportion of total dNK cells

Fig. 1 An atlas of decidual immune cells in RPL patients. a Flowchart depicting the overall design of the study. Numbers indicate the number of
individuals analyzed. b A t-SNE projection of the 18,646 total CD45+ leukocytes from nine RPL patients and 15 healthy controls, indicating 11 main
clusters. Different colors indicate cell clusters and disease status (see legend for key). NKp, proliferating natural killer cells; pro, progenitor cells. c Violin
plots of selected marker genes (upper row) for multiple immune cell subsets. The first column shows the names of the decidual cell clusters, the
second column represents the numbers of cells in each cluster. d Pie chart showing the proportion (i.e., % of total sequenced immune cell
complement) for each of the 11 cell clusters in healthy controls and RPL patients. e Flow cytometry analysis of a larger cohort of healthy controls and
RPL patients (including those sequenced in scRNA-seq), showing the proportions of the decidual NK cells, macrophages, and T cells among the gated
CD45+ leukocytes. ns, P > 0.05; *P < 0.05; **P < 0.01; Student’s t-test. All points are shown and bars represent means with SEM (nc= 24, np= 23;
np: number of RPL patients, nc: number of healthy controls).
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Fig. 2 A subset of angiogenic dNK cells are decreased in RPL patients. a, b t-SNE plots of 9409 dNK cells, indicating four main clusters (a) from RPL
patients and healthy controls (b). Colors indicate cell clusters and disease status. NKp, proliferating natural killer cells. c The proportion of dNK1, dNK2, dNK3,
and dNKp cell subsets among the 9409 dNK cells from healthy controls and RPL patients. d Flow cytometry analysis of a larger cohort of healthy controls
(nc= 24) and RPL patients (np= 23) to confirm the proportions of dNK1, dNK2, and dNK3 cell subsets among all gated dNK (CD45+CD56+CD3−) cells. e Scatter
plot of the enriched genomic features in chromatin accessible sites of the three dNK cell subsets by ATAC-seq of the healthy controls (dNK1, nc= 5, np= 3;
dNK2, nc= 2, np= 5; dNK3, nc= 4, np= 3). f, g Violin plots of the expression of genes involved in the signaling pathway “angiopoietin receptor Tie2-
mediated signaling pathway” and “cytokine-mediated signaling pathway” in the three dNK cell subsets from healthy controls. h Heatmap for unsupervised
clustering analysis of the differentially expressed genes between healthy controls and RPL patients, assessed for each of the three dNK cell subsets. Genes
colored in red belong to the term of “cytokine-mediated signaling pathway”. i UCSC genome browser visualization of the chromatin accessibility profiling at
the IFNG locus. j Violin plots of single-cell RNA expression of the IFNG gene in each dNK cell subset in healthy control and RPL patients. k Bar graph showing
the percentage of IFN-γ expression in dNK1, dNK2, and dNK3 cell subsets from healthy controls (nc= 7) and RPL patients (np= 7). l UCSC genome browser
visualization of the chromatin accessibility profiling at the LILRB1 locus. m Violin plots of single-cell expression of the LILRB gene in each dNK cell subset in
healthy control and RPL patients. n Bar graph showing the percentage of LILRB1 expression in dNK1, dNK2, and dNK3 cell subsets from healthy controls
(nc= 7) and RPL patients (np= 7). ns, P> 0.05; *P < 0.05; **P < 0.01; ***P< 0.001; ****P< 0.0001; Student’s t-test. Bars represent means with SEM.

Guo et al. Cell Discovery             (2021) 7:1 Page 4 of 15



between RPL patients and healthy controls (Fig. 1d, e),
there were obvious differences between patients and
controls in the proportions of the dNK cell subsets
(Fig. 2c). Specifically, dNK1 cells were significantly
decreased in RPL patients, while dNK2 cells were slightly
increased and dNK3 cells were significantly increased.
We confirmed these findings using flow cytometry ana-
lysis of the larger RPL patient cohort (Fig. 2d, np= 23,
nc= 24, P= 0.0004, P= 0.0001, P= 0.0019, respectively).
To investigate any distinct functions for these three

dNK cell subsets, we performed a differential analysis of
all the transcriptomes obtained from our scRNA-seq
experiment alongside chromatin accessibility profiles
from bulk ATAC-seq analysis of sorted dNK subsets. We
found that genes of the angiopoietin receptor Tie2-
mediated signaling pathway were enriched in the dNK1
cell subset (Fig. 2e): dNK1 cells expressed genes including
CDKN1A, RELA, and TNIP2 (Supplementary Fig. S4b).
Further, we detected elevated expression levels for the 24
genes of this signaling pathway (Fig. 2f). Similar to
recently reported findings, we found that dNK1 cells
expressed high levels of KIR gene family members
(encoding the killer immunoglobulin receptor proteins),
suggesting that dNK1 cells are likely recognized by EVTs
(Supplementary Fig. S4c, d). dNK1 cells also expressed
LILRB1 (Supplementary Fig. S4e, f), which binds to HLA-
G proteins expressed on trophoblast cells to increase the
secretion of growth-supporting factors31.
Regarding the dNK2 and dNK3 cell subsets, these cells

had similar extents of chromatin accessibility and had
somewhat similar gene expression profiles. Both dNK2
and dNK3 cells were highly enriched for genes of
cytokine-mediated signaling pathways (Fig. 2e, g), and the
dNK3 cells expressed especially high levels of the immu-
nomodulatory IFNG gene (encoding IFN-γ) (Supple-
mentary Fig. S4g, h). These results highlight the functions
of the three dNK cell subsets we detected at the
maternal–fetal interface, and suggest that the dNK1 cells
have embryo growth-supporting activity whereas the
dNK2 and dNK3 cells are prone to the cytokine secretion.
Next, seeking etiopathogenic insights about RPL, we

examined the functional divergence of the NK cell subsets
in RPL patients and healthy controls. Unsupervised clus-
tering of disease-associated differentially expressed genes
in the dNK1, dNK2, and dNK3 cell subsets indicated an
overall enhancement of cytokine-mediated signaling
pathways in the three dNK cell subsets from RPL patients
(Fig. 2h; Supplementary Fig. S4i and Table S3). Con-
firming these findings from our ATAC-seq, scRNA-seq
data and flow cytometry analysis showed significantly
increased accessibility, expression, and secretion of IFNG
in RPL patients in all the three dNK cell subsets
(Fig. 2i–k), further supporting that dNK cells function
to promote an inflammatory environment in RPL decidua.

In addition, we found that the expression of LILRB1 in
dNK1 cells was slightly decreased, suggesting that inter-
action between dNK1 cells and EVTs was weakened
under disease conditions (Fig. 2l–n). Collectively, these
results indicate that, in RPL decidua, the normal angio-
genic function of dNK cells is weakened, and this is
accompanied by an enhancement of cells that exert pro-
inflammatory dNK functions and an apparent reduction
in receptivity for trophoblasts.

Aberrant differentiation trajectory impairs dNK1 cell
subset accumulation in RPL patients
We then investigated the specific trajectories of the

three dNK subsets throughout the course of dNK cell
differentiation in the decidua. We applied a high-
resolution pseudo-time prediction algorithm Palantir28

to construct the differentiation potential trajectory of
all dNK cells from RPL patients and healthy controls
(Fig. 3a–c and Supplementary Fig. S5a). We found three
developmental branches where dNKp differentiate into
dNK1 cells (Path 1) and into two distinct branches of
dNK2 and dNK3 cells (Path 2 and Path 3) (Fig. 3c and
Supplementary Fig. S5a). We also identified a differ-
entiation pathway wherein dNK2-like cells with an
apparent tendency to transform into dNK1 cells (Path T)
(Fig. 3c). Our discovery of this differentiation pathway
illustrates a previously unknown source of pregnancy-
promoting dNK1 cells in the decidua.
We next integrated our single-cell data for healthy

individuals with the decidua profiles from a previous
study25 and successfully confirmed that Path 1, Path 2,
and Path T also exist in healthy individuals (Supplemen-
tary Fig. S5b). In contrast, this integrative analysis indi-
cated that Path 3 is apparently RPL-specific. Further, by
comparing the gene expression patterns of cells in Path 2
and Path 3, we noticed that genes related to inflammatory
responses were enriched in Path 2 cells, indicated from
the expression of TGFB1, NFKB1, and REL (Supplemen-
tary Fig. S5c, d). Path 3 cells featured enriched expression
for genes of cytokine-mediated signaling pathways, such
as IFNG, TNF (Supplementary Fig. S5c, e), consistent with
the aforementioned increase in cytokine-mediated sig-
naling pathways in the dNK3 cells of RPL patients.
In addition to such pseudo-time analyses, the future

state of individual cells can be predicted based on the time
derivative of the gene expression state in each cell in
terms of RNA velocity32. We applied this approach to
reveal the differentiation trend of every single cell at one
stage to its future stage. As expected, RNA velocity pre-
dicted that dNKp cells differentiate and bifurcate into
both dNK1 and dNK2 cells (Supplementary Fig. S5f).
Interestingly, we found a clear difference in the propor-
tion of Path T cells between RPL patients and healthy
individuals, with patients having significantly smaller
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subsets of Path T cells (Fig. 3d). More specifically, healthy
decidua had an average of 540 (540/4923, 10.97%) such
cells, whereas RPL patients had an average of only 216
(216/4486, 4.81%) cells, suggesting a weaker tendency of
cells transform into dNK1 cells. Note that we successfully
confirmed the presence of Path T cells based on Smart-
seq2 single-cell transcriptome data for healthy decidua25

(Supplementary Fig. S5g).
To characterize these Path T cells in greater detail, we

examined the expression of dNK cell subset marker genes
in our RNA-seq data and found that Path T cells
expressed low levels of CD39 and CD18 genes (Supple-
mentary Fig. S5h). A subsequent flow cytometry analysis
showed that the number of CD39−CD18− dNK cells was
significantly decreased in RPL patients compared to
healthy controls (Fig. 3e, f, P= 0.0026), suggesting that
this disease may be affected by a diminished source of
dNK1 cells. We then sorted the CD39−CD18− dNK cells
and cultured them in vitro and confirmed that these cells
can indeed successfully transform into dNK1 cells (Fig. 3g,
h). Thus, beyond empirically illustrating developmental
plasticity for the dNK cell population, our findings suggest
that impaired accumulation of the CD39−CD18− dNK
cells may lead to a decreased number of dNK1 cells, and
thereby insufficient support for fetal growth in RPL
patients.

Disease characteristics and cell–cell interactions of
macrophage and T cells
After dNK cells, macrophages are the most abundant

leukocytes5, and we examined the cellular heterogeneity
of macrophages in the decidual immune microenviron-
ment. We detected two subsets of macrophages from a
total of 3406 single-macrophage transcriptomes: mac1
and mac2 (Fig. 4a). Recalling our initial finding that RPL
patients had dramatically reduced overall macrophage
populations (Fig. 1e), we found that RPL patients had
modestly elevated mac1 populations compared to heal-
thy controls and had remarkably decreased mac2
populations (Fig. 4b, c). We then performed a differential
analysis of gene expression between mac1 and mac2
subsets to help characterize any functional differences
(Supplementary Fig. S6a). Gene Ontology (GO) enrich-
ment of the differentially expressed genes suggested that
mac1 cells apparently function in neutrophil-mediated
immunity, while mac2 cells may be functionally asso-
ciated with the regulation of NK cell chemotaxis (Sup-
plementary Fig. S6b). In order to better characterize the
phenotype of macrophage subsets, we performed protein
interaction network analysis using differentially expres-
sed genes of macrophage subsets by STRING33. We
found S100A10, S100A6, S100B, and S100A4 genes
were overexpressed in mac1 and PLAU, DAB2, EGR1,

Fig. 3 Aberrant developmental trajectory impairs dNK1 cell subset accumulation in RPL patients. a–c Palantir’s t-SNE map of the total dNKp,
dNK1, dNK2, and dNK3 cell subsets (a), cells colored by the conditions of RPL patients and healthy controls (b), and cells colored by Palantir
differentiation potential (c). d Velocity field projected into the t-SNE map of the dNKp, dNK1, dNK2, and dNK3 cell subsets in the healthy controls (left)
and RPL patients (right). Arrows show the local average velocity evaluated on a regular grid. The right frame, velocities of Path T cells shown on the t-SNE
map. e The proportion of CD39− CD18− dNK cells among gated dNK (CD45+CD56+CD3−) cells from healthy controls (left) and RPL patients (right). f Bar
plot of the proportion of CD39− CD18− NK cells for multiple samples in healthy controls (nc= 20) and RPL patients (np= 24). g Percentage of CD39+

dNK1 cells before (left) and after (right) CD39−CD18− NK cells cultured in vitro for 2 days. h Percentage of CD39+ dNK1 cells before and after
CD39−CD18− NK cells cultured in vitro for 2 days. Results in g were representative in five independent experiments. **P < 0.01. Significance was
evaluated with Student’s t-test. All points are shown and bars represent means with SEM.
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etc., were enriched in the mac2 subset (Supplementary
Fig. S6c).
To assess the M1/M2 polarization potential of these two

macrophage subsets, we examined the expression of M1
and M2 genes34 in mac1 and mac2 cells. We found that
mac1 cells showed M1 polarization characteristics
(Fig. 4d); however, mac2 cells were highly enriched with
M2 specific genes (Fig. 4d). For example, SEPP1 and MAF
(Fig. 4e)—which are important M2-like macrophage

marker and regulator35—were both expressed in the mac2
cells. These results suggest that mac2 cells may func-
tionally contribute to successful pregnancy by promoting
normal M2 macrophage homeostasis in the decidua.
To investigate how the functions of mac1 and mac2

cells may be altered in RPL patients, we conducted a
pairwise comparison of the differentially expressed genes
of the macrophage subsets between RPL patients and
healthy controls. GO analysis indicated that the functions

Fig. 4 Macrophages enhance cytokine-mediated pathways in RPL patients. a, b t-SNE plots of macrophages from RPL patients and healthy
controls, indicating the mac1 and mac2 subsets (a), and the distribution of RPL patients and healthy controls (b). Colors indicate cell clusters and
disease status. c Bar plot showing the proportions of mac1 and mac2 cell subsets in healthy controls and RPL patients. d Box plots of the M1 and M2
macrophage signature genes’ expressions in mac1 and mac2 cell subsets. The box represents the second, third quartiles and median, whiskers each
extend 1.5 times the interquartile range; dots represent outliers. e Violin plot of SEPP1 and MAF gene expression in mac1 and mac2 cells. f, g Violin
plots of the expressions of genes involved in “regulation of NK chemotaxis” (f) and “positive regulation of T cell chemotaxis” (g) in mac1 and mac2
cell subsets from healthy controls and RPL patients. h, i Representative example of immunofluorescence staining of DAPI (h, i, blue), CD14 (h, i, red),
CD56 (h, yellow), CD3 (i, green), and overlay from a decidual tissue region from healthy controls and RPL patients and from decidual tissue with
negative control staining (bottom row). Results in h, i were representative in three independent experiments. Scale bars, 200 μm.
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of mac1 cells were enhanced in the disease state (Sup-
plementary Fig. S6d, e). To our surprise, the enrichment
analysis predicted that the functions of RPL patient mac2
cells were altered compared to healthy mac2 cells, for
example switching from a “regulation of NK cell chemo-
taxis” predicted function in healthy mac2 cells to “positive
regulation of T cell chemotaxis” in RPL patients (Fig. 4f, g
and Supplementary Fig. S6f). We also observed the
expressions of genes involved in “NK cell chemotaxis”
were decreased in mac2 cells in RPL patients, and
those with “T cell chemotaxis” were significantly higher
expressed in both mac1 and mac2 cells in RPL patients
(Fig. 4f, g). Thus, we applied the immunofluorescence
assay to characterize the spatial co-localization between
macrophages and NK cells and T cells. Our results indi-
cated that macrophages aggregated with NK cells in the
normal decidua, whereas under disease condition mac-
rophages co-localized with T cells (Fig. 4h, i).
We next investigated the heterogeneity of T cells from

RPL patients and healthy individuals. We re-clustered
T cells and identified three T cell subsets including CD4+

T, CD8+ T, and FOXP3+ regulatory T cells (Fig. 5a, b).
Unsupervised clustering of disease-associated differen-
tially expressed genes in the CD4+ T, CD8+ T, and Treg
cell subsets indicated an overall enhancement of cytokine-
mediated signaling pathways in T cells from RPL patients
(Fig. 5c, d). Th1 and pro-inflammatory signatures36 were
significantly enhanced in T cells and each T subset of RPL
patients (Fig. 5e). To further illustrate the molecular basis
of the crosstalk between macrophages and T cells, we
applied the CellPhoneDB25 algorithm to analyze the
enrichment of interaction pairs. And we found TNFSF14-
TNFRSF14, TNFSF14-LTBR, and CCL5-CCR1 receptor/
ligand pairs involved in the “positive regulation of T cell
chemotaxis” were enhanced in RPL patients (Fig. 5f).
In summary, our analysis of the second and third most

common immune cell types in the decidua revealed that
RPL patients exhibit reductions in a homeostasis-
promoting subset of macrophages. Instead of dNK cells,
macrophages in the RPL disease state are prone to
interact with Th1-like T cells.

Alteration of the decidual immune response in RPL
patients
The decidual immune microenvironment is a complex

system in which multiple immune cells function via
interactions with other cells. In addition to our analyses
which considered the RPL-associated changes in specific
immune cell types including dNK, macrophages, and
T cells, we also used the curated receptor/ligand inter-
action database CellPhoneDB to identify alterations of
molecular interactions between the various immune cell
subsets and EVT and stromal cells in the RPL patients
(see Materials and methods). We found 959 pairs of

interactions between immune cells were increased in RPL
patients (Supplementary Table S4). Macrophages engage
in extensive interactions with all the other immune cells
in patients and in healthy controls and associated with
25.86% (248 pairs) of the overall alteration, suggesting a
central role in the regulation of the disease (Supplemen-
tary Fig. S7a, b).
To further explore the immune microenvironment of

the maternal–fetal interface in RPL patients, we inte-
grated our single-cell decidua data with the scRNA-seq
data from healthy EVTs and healthy stromal cells25. This
dataset integration enabled predictions for the interac-
tions of the eight major immune cell types from RPL
patients with EVTs and stromal cells (Fig. 6a). As
expected, several receptor/ligand pairs (e.g., CSF1R-CSF1
and CCR1-CCL5) connected the dNK subsets with EVTs
in the healthy decidua. In contrast, several other receptor/
ligand pairs in immune cell subsets with EVTs and stro-
mal cells were dysregulated according to the RPL decidua
data. The strength of interaction through the NOTCH
signaling pathway (e.g., NOTCH3-JAG1, NOTCH2-
JAG1) between dNK1 and dNK2 cells with EVTs and
with stromal cells was significantly reduced in the RPL
patients. We summarized the RPL-associated changes in
receptor/ligand interactions between immune cells and
both the EVTs and stromal cells (Fig. 6b, c and Supple-
mentary Table S5). Collectively, these findings illustrated
the molecular basis of cell–cell interactions at the
maternal–fetal interface in an inflamed state, leading to a
better understanding of the mechanisms of reproductive
failure in RPL patients.

Discussion
The immune microenvironment at the maternal–fetal

interface is essential for maintaining normal embryonic
development37. Previous studies have illustrated the land-
scape of decidual immune cells and their intercellular
interactions at the maternal–fetal interface in healthy
people25. Here, we present single-cell transcriptomes of the
decidual immune microenvironment in patients with RPL.
We identified that RPL patients have a remarkably decreased
number of a particular subset of dNK cells (dNK1), which
may contribute to the secretion of growth-promoting
factors to promote normal pregnancy38. Meanwhile, RPL
patients harbor significantly increased numbers of a pro-
inflammatory subset of dNK cells (dNK3) that produce
cytokines. We also characterized a population of dNK2-like
(Path T) cells which can transform into dNK1 cells, and
discovered that the RPL patients have dramatically fewer
Path T cells than healthy controls. In addition to dNK cells,
we also found that macrophages function differently in
normal pregnancy environments and disease states. The
former tend to recruit NK cells to maintain immune toler-
ance, while the latter tend to recruit T cells with an
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inflammatory signature in RPL patients. Finally, we provide
a series of detailed maps presenting the global interactions
between our sequenced decidual immune cells and both

EVTs and stromal cells, enabling ligand/receptor level
hypothesis generation about the likely causes underlying
pregnancy failure.

Fig. 5 T cell subsets and their interactions with macrophages. a t-SNE plots of 4071T cells, indicating three main clusters (left) from RPL patients and
healthy controls (right). Colors indicate cell clusters and disease status. b t-SNE plots showing the expression of marker genes in each T cell subset.
c Heatmap for unsupervised clustering of the differentially expressed genes between healthy controls and RPL patients, assessed for each of the three
T cell subsets. d Heatmap of the enriched genomic features of the differentially expressed genes between healthy controls and RPL patients. e Violin
plots of the pro-inflammatory and Th1 signature genes’ expressions in T cell subsets from healthy controls and RPL patients. ****P < 0.0001. Significance
was evaluated with Student’s t-test. f Dot plot of the predicted interactions of macrophages with T cells in the RPL patients and healthy controls. P values
were indicated by circle size. The expression levels of all the interacted genes were indicated by colors, scales on the right.
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Studies have reported that the normal pregnancy
decidual immune microenvironment presents a Th2-
biased situation, while Th1-type immunity may lead to
pregnancy failure39. For one, Th1 cells prevent growth
and differentiation of trophoblast through a mechanism
that depends on proinflammatory cytokines40,41. Indeed,
our study found that the overall decidual immune
microenvironment of RPL patients presented as primarily
Th1-type: the number of dNK2 and dNK3 cell subsets
with cytokine-secreting functions were increased in RPL
patient decidua, and the proportion of inflammatory
macrophage sub-population mac1 was also increased,
consistent with recent publication42. This mac1 increase
was accompanied by a substantial decrease in the mac2
macrophage subset, which was enriched with
M2 signature genes and might function to maintain
immune homeostasis43. However, how RPL macrophage
subsets lead to increased cytokine secretion from dNK
cells (e.g., IFNG) and promote the chemotaxis of
inflammatory T cells still requires further investigation.
Viewed collectively, these findings suggest that ther-
apeutically adjusting the proportions of the decidual
immune cell subsets may help restore normal pregnancy.
There are inevitable difficulties in obtaining the optimum

tissues from patients with RPL who are unlikely to request
termination44. Although we had taken special care and fol-
lowed the published procedures10 when we collected
decidua samples from RPL patients and healthy controls

(see Materials and methods), there is a limitation that we
obtained samples from women at the time of the pregnancy
loss and not at an elective termination in women with this
clinical history. Since the decidual samples from RPL
patients were collected after fetal demise, it is still possible
that some alterations of decidual immune cells we observed
in this study could be the consequence of the fetal death.
Our empirical data, while not fully satisfactory, delineate the
dNK cell plasticity which is associated with the impaired
accumulation of pregnancy-promoting dNK1 cells in
patients, and improve our understanding of the hetero-
geneity and interaction of cells at the maternal–fetal inter-
face in disease status, providing clues for future treatment of
the disease.

Materials and methods
Human samples
Normal decidual samples with no previous pregnancy

loss were obtained from elective terminations of appar-
ently normal pregnancies. The elective termination was
performed via dilation and curettage (D&C). For the
decidua samples from abnormal pregnancies, the patients
were advised to obtain an induced abortion after a clinical
diagnosis of embryo demise. The diagnosis of embryo
demise was following the guidelines from First Affiliated
Hospital of University of Science and Technology of
China, such as mean sac diameter of 25 mm or greater
and no embryo or absence of an embryo with heartbeat

Fig. 6 Alteration of decidual immune responses in RPL patients. a Dot plot of predicted interactions of immune cells with EVTs and with stromal
cells in the RPL patients and healthy controls. P values were indicated by circle size. The expression levels of all the interacted genes were indicated
by colors, scales on the right. b, c Summary illustrations depicting the altered interactions of decidual immune cells with EVTs (b) and stromal cells (c)
in healthy controls (up) and RPL patients (down).
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2 weeks or more after a scan that showed a gestational sac
without a yolk sac. Fetal heart activity was assessed using
Doppler ultrasound at 7–9 weeks of gestation. When
abnormal fetal heart activity was observed, the patients
were advised to be tested for serum β-human chorionic
gonadotropin levels, with additional ultrasounds every
other week. D&C was performed within 24 h of ultra-
sonographic documentation of fetal loss.
When decidua samples were obtained, chorionic villi

and blood clots were identified and carefully separated
from the maternal decidua. The chorionic villi were then
sent for cytogenetic analysis. Normal embryo karyotypes
were identified to enable the exclusion of genetic or
mechanical causes for embryo demise. We also excluded
patients with clinical symptoms of heavy bleeding and
cramps prior to induced abortion. The mean gestational
ages are 7.24 weeks in controls and 8.50 in RPL patients.
All of the decidua samples were collected from the First
Affiliated Hospital of the University of Science and
Technology of China. Before surgery, informed consent
was obtained from each patient. Ethical approvals were
obtained from the ethics committee of the University of
Science and Technology of China.

Cell isolation
Fresh decidual tissues were washed extensively in

phosphate-buffered saline with 100 IU/mL penicillin/
streptomycin and sheared into tiny pieces. Mononuclear
lymphocytes were released by digesting the tissues with
1 mg/mL collagenase IV (Sigma) in RPMI 1640 at 37 °C
for 1 h, with shaking at 250× r.p.m. The suspensions were
filtered via 70 μm nylon mesh cell strainers (i-Quip) and
then loaded on a Ficoll-Paque density gradient for
separation of decidual cells, which include CD45+

immune cells and stromal cells. Next, decidual CD45+

cells were sorted and cryopreserved according to the
official recommendations from 10× Genomics for scRNA-
seq analysis. For ATAC-seq analysis of the dNK cell
subsets, dNK1 cells (CD45+CD3−CD56+CD39+CD103−

CD18−), dNK2 cells (CD45+CD3−CD56+CD39−CD103−

CD18+), and dNK3 cells (CD45+CD3−CD56+CD39−

CD103+CD18+) were sorted, and the ATAC-seq libraries
were prepared immediately.

Antibodies and reagents
The following antibodies were used for the analysis of

decidual immune cells with FACS, intracellular staining,
and cell sorting: PerCP/Cy5.5 anti-human CD45 (HI30),
Brilliant VioletTM 421 anti-human CD56 (HCD56), APC/
Cy7 anti-human CD3 (SK7), PE anti-human CD14 Anti-
body (63D3), FITC anti-human CD39 (A1), PE anti-
human CD18 (TS1/18), Alexa Fluor® 647 anti-human
CD103 (Integrin αE) Antibody (Ber-ACT8), APC anti-
human IFN-γ (4S.B3), and APC anti-human CD85j

(LILRB1) Antibody (GHI/75). All antibodies above were
purchased from BioLegend.

Flow cytometry
Decidual mononuclear cells were prepared and stained

using the aforementioned human mAbs. Homologous IgGs
served as negative controls. FACS surface marker staining
was performed according to BioLegend antibody instruc-
tions. For intracellular staining of cytokines, decidual cells
were stimulated with PMA (50 ng/mL, Sigma) and iono-
mycin (1 μg/mL, Sigma) in the presence of brefeldin (5 μg/
mL, BioLegend) for 4 h. After stimulation, the cells were
then collected, stained with fluorescein-labeled antibody,
washed, and blocked according to the product instructions
for BD Cytofix/Cytoperm Cell Permeabilization/Fixation
Solution (BD Biosciences).

ScRNA-seq
We sorted viable CD45+ cells from each decidual

sample of RPL patients and healthy controls. The cells
were then counted and resuspended at a concentration of
1000 cells/μL, aiming for an estimated 8000 cells per
library, following the instructions of single-cell 3ʹ solution
v2 reagent kit (10× Genomics). Briefly, the cell suspen-
sions were loaded onto a chromium single-cell chip along
with reverse transcription master mix and 3ʹ gel beads.
After the generation of single-cell gel bead-in-emulsions
(GEMs), reverse transcription was performed using a
C1000 TouchTM Thermal Cycler (Bio-Rad). The ampli-
fied cDNA molecules were then purified with SPRIselect
beads (Beckman Coulter). Single-cell libraries were then
constructed following fragmentation, end repair, polyA-
tailing, adaptor ligation, and size selection according to
the manufacturer’s standard protocols. Each sequencing
library was generated with a unique sample index.
Libraries were sequenced on the Illumina HiSeq X Ten
platform.

Transposome generation
To generate Tn5 transposomes for ATAC-seq library

preparation on dNK cell subsets, two oligos (R1, R2) were
annealed separately to common pMENTs oligos (5Phos/
CTGTCTCTTATACACATCT) at 95 °C for 2 min, with
cooling until 14 °C at a rate of 0.1 °C/s. After annealing,
the annealed R1 and R2 oligos were mixed at a 1:1 molar
ratio, incubated with unloaded transposase Tn5 at 25 °C
for 30min, and then stored at −20 °C for ATAC-seq
library construction.
The nucleotide sequences of the two oligos were as

follows.
R1: TCGTCGGCAGCGTCAGATGTGTATAAGAGA

CAG.
R2: GTCTCGTGGGCTCGGAGATGTGTATAAGAG

ACAG.
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ATAC-seq library preparation and sequencing
ATAC-seq of dNK cell subsets was performed as pre-

viously described45, with minor modifications. Briefly, dNK1,
dNK2, and dNK3 subsets were sorted using the SH800S
sorter (Sony). Samples were obtained from a distinct cohort
from those were used for the scRNA-seq. Approximately
50k cells were used per library. Samples were lysed in cold
lysis buffer (10mM Tris-HCl, pH 7.4, 10mM NaCl, 3mM
MgCl2, and 0.1% NP-40 (Roche) for 3min on ice to prepare
the nuclei. Immediately after cell lysis, nuclei were cen-
trifuged at 500× g for 5min and the supernatant was dis-
carded. Nuclei extracts were then incubated with the
generated Tn5 transposomes and 5× Tris-DMF tagmenta-
tion buffer (pH 8.0, 50mM Tris-HCl, 25mM MgCl2, 50%
DMF) at 37 °C for 30min. After DNA purification with a
MinElute Kit (Qiagen), PCR was performed to amplify the
library for 12–15 cycles according to a quantitative PCR
reaction for optimum cycles. The PCR thermocycling pro-
gram was as follows: 98 °C for 30 s; then 98 °C for 10 s, 63 °C
for 30 s, and 72 °C for 1min for the appropriate number of
cycles. Following PCR, sample libraries were purified and
sequenced using the Illumina HiSeq X Ten platform with
the 150-bp paired-end configuration.

NK cell culturing in vitro
To characterize the “Path T” cells, we sorted

CD39−CD18− dNK cells, which we cultured in RPMI-
1640 with 10% fetal bovine serum. After 2 days, we col-
lected the cultured cells and stained them with fluores-
cently labeled antibodies as follows: Brilliant VioletTM 421
anti-human CD56 (HCD56), APC/Cy7 anti-human CD3
(SK7), FITC anti-human CD39 (A1), PE anti-human
CD18 (TS1/18), and Alexa Fluor® 647 anti-human
CD103 (Integrin αE) Antibody (Ber-ACT8). We then
performed FACS for the detection of CD39 and CD18
expression in cultured dNK cells.

Immunofluorescence assay
Decidual tissues from RPL patients and healthy controls

were embedded in Optimal Cutting Temperature Com-
pound (O.C.T.) and snap-frozen. The cryostat sections
were fixed with 4% PFA and incubated in the blocking
buffer at room temperature for 1 h. The fluorescent-
labeled antibodies were then added in the dark at 37 °C for
1 h, followed by DAPI staining. PBS+ 0.1%BSA was used
for washing unlabeled antibodies. The following anti-
bodies were used: FITC anti-human CD3 Antibody
(HIT3a, 1:100, Biolegend), PE anti-human CD14 Anti-
body (63D3, 1:200, Biolegend), and Alexa Fluor® 647
anti-human CD56 Antibody (5.1H11, 1:200, Biolegend).
Finally, the decidual tissue sections were evaluated with a
confocal microscope (IXplore SpinSR, Olympus). We
used Fiji/ImageJ version 2.1.0 to analyze our immuno-
fluorescence images.

ScRNA-seq data processing
Droplet-based raw data were processed using Cell

Ranger (Version 3.0.0)46 against the GRCh37 human
reference genome with default parameters. First, data
from each batch was normalized separately using the
NormalizeData function and scaled with the ScaleData
function implemented in the Seurat pipeline29. Then
data from different batches were integrated using the
canonical correlation analysis (CCA) method imple-
mented in Seurat29. For each subset of immune cells, NK
cells and macrophage subtypes were identified based on
the clustering analysis of the single-cell profiles from RPL
patients and healthy control individuals shown in Fig. 1.
T cells were extracted, normalized, re-clustered, and
analyzed separately. We retained cells with detected
gene numbers between 500 and 3000 and less than 10%
mitochondrial UMIs. Moreover, genes expressed in fewer
than three cells were also excluded. Downstream data
processing and analysis steps, including filtering, nor-
malization, batch removal, dimension reduction, were
performed using the Seurat package version 2.3.1. We
clustered all the cells based on the integrated gene
expression matrix using Seurat with a parameter Reso-
lution=0.6 and generated 11 clusters. In addition, we
combined the Droplet-based dataset from Vento-Tormo
et al.25 with our transcriptome data from healthy controls
(1:20 subspaces) using CCA in the Seurat pipeline. To
quantify the similarity of the two datasets, we applied
matchSCore247 to calculate the Jaccard index of clusters
using the top 100 ranking cell-type-specific marker genes.
In addition to Seurat, we also used Harmony30 to inte-
grate different batches from healthy controls and RPL
patients to verify our integration reliability. We used the
same gene expression matrix as used in Seurat and per-
formed RunHarmony function in Hamony with default
parameters to perform data integration. We then used the
same clustering algorithm as that used in Seurat to cluster
the cells with resolution 0.3 to generate distinct cell type
clusters.

Differential expression analysis
We performed differential gene expression analysis for

our identified cell subsets using the Wilcoxon rank-sum
test within the Seurat “FindAllMarkers” command. We
also performed differential gene expression analysis
between normal individuals and patients using the
“FindMarkers” function in the Seurat package. We applied
multiple thresholds (fold-change > 1.5, P value < 0.01 for
NK cells, fold-change > 2, P value < 0.01 for macrophage
cells) to identify marker genes expressed in each cell
subset and differentially expressed genes between normal
and patients. We then performed GO analysis using the
KEGG pathway and Biological Process database through
the GSEApy python package. Protein–protein association
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network analysis was performed using differentially
expressed genes of macrophage subsets by STRING v1133

with setting k-means clustering method (k= 5).

Single-cell data imputation analysis
We applied SAVER (Version 1.1.1)48 to denoise our

single-cell transcriptome data with the NK subsets and
macrophages. Raw data were processed using the “saver”
function with the setting “estimates.only=TRUE”.
Finally, we used the imputation data to visualize the dif-
ferentially expressed genes that were enriched in the RPL
patients.

ATAC-seq data processing
Primary data were processed as described previously49.

Briefly, we removed adapter sequences and then mapped
reads to the hg19 using Bowtie250. The PCR duplicates
and reads mapped to chromosome M were removed. The
uniquely mapped reads were shifted +4/−5 bp according
to the strand of the read. All mapped reads were then
extended to 50 bp centered through the cleavage position.
Peak calling was performed using MACS251 with the
options - f BED -g hs, -q 0.01, --nomodel, and --shift 0.
The number of raw reads mapped to each peak at each
condition was quantified using the intersectBed function
in BedTools52. Raw counts in peaks were normalized
using the DESeq53 package in R. Peak intensity was
defined as the log2 of the normalized counts. Significance
analysis was then performed by pair-wise comparison
using DESeq with P value < 0.01 and log2|fold-change| >
1. GO analysis of cis-regulatory regions was performed
with GREAT54.

Developmental trajectory analysis using Palantir
Palantir28 is a high-resolution algorithm, which allows

computing a continuous probabilistic process to model
cell fate choice by applying multiple diffusion compo-
nents. Here, Palantir was applied to NK subsets in our
data and to the integrated dataset. Basically, we used the
CCA-aligned subspaces generated from Seurat to replace
the low-dimensional principal components subspaces to
reduce the batch effects. Twenty diffusion components
were selected and computed with default parameters in
Palantir. Diffusion components scaled by an Eigen gap
were used as inputs and perplexity was set to 200 to
generate the t-SNE maps. To accurately define the initial
cell state, we imputed a pseudo cell as the start cell by
calculating the average gene expression of our identified
dNKp cells. A waypoints = 1200 value was applied, and
the parameter k was set to 50 for datasets.

Cell velocity analysis
RNA velocity32 analysis was performed using the

“velocyto run” and “velocyto run_smartseq2” commands

(velocyto, version 0.17.17), following this pipeline
(https://github.com/velocyto-team/velocyto-notebooks/
tree/master/python/DentateGyrus.ipynb) as described.
First, cells with the lowest 5 percentile spliced and
unspliced counts were filtered out. Genes with less than
50 read counts or were detected in fewer than 20 cells
were excluded for spliced molecules and high variation
genes set to 3000 were selected. Genes with less than 25
read counts or detected in fewer than 10 cells were also
filtered out for unspliced molecules. We also filtered
out genes based on a cluster-wise expression with
thresholds (unspliced= 0.05, spliced= 0.1). Then, spliced
and unspliced molecules counts were normalized sepa-
rately using the default parameters implemented in the
pipeline. To reduce dimensionality, we selected the top 30
principal components to construct a k-nearest neighbors
algorithm (KNN, k= 200) graph, applying the Euclidean
distance metric. Finally, velocity-based extrapolation was
computed using the assumption of constant velocity
under model I. To visualize the predicted results on low-
dimensional maps, we projected the velocities onto the
t-SNE embedding space generated from Palantir by using
the recommended procedures in the pipeline.

Receptor–ligand interaction analysis
CellPhoneDB25 enables analysis of cell–cell commu-

nication networks by predicting ligands, receptors, and
interactions. To identify potential interactions between
NK cells, macrophages, T cells, and other cell types,
we applied the CellPhoneDB algorithm to our tran-
scriptome data for normal individuals and patients.
Briefly, receptor–ligand interactions were only considered
based on the expression of a ligand by one specific cluster
and a receptor by another cluster (as least 10% cells
expressed). Pairwise comparisons between all cell subsets
were performed by randomly permuting cluster labels for
all cells 1000 times automatically. And a P value for each
receptor–ligand in every cluster–cluster interaction was
computed using a null distribution. For the EVTs and
stromal cells, we finally prioritized interactions with more
significant (P < 0.05) cell–cell interaction pairs in healthy
controls than that in RPL patients, while the selection
criteria of interactions between macrophages and T cells
was the opposite. We also selected interactions based on
biological relevance. Networks were created using
Cytoscape (version 3.7.1).

Statistics
We used unpaired Student’s t-tests to assess differences

in the proportions of NK cells, macrophage cells, and
T cells in healthy controls versus RPL patients. We
also used unpaired Student’s t-tests to analyze the pro-
portions of dNK cell subsets (dNK1, dNK2, dNK3) and
CD39−CD18− NK cells (percentage of CD56+ NK cells)
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between the two sample groups. Gene expression and
gene set expression between healthy controls and RPL
patients were analyzed using unpaired Student’s t-tests.
To identify marker genes expressed in each subset and the
differentially expressed genes between healthy controls
and RPL patients, we used the Wilcoxon rank-sum tests
implemented in Seurat. A permutation test for the Cell-
phoneDB analysis was used to evaluate the significance of
a receptor/ligand pair.
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