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Abstract
With the rapid development of next-generation sequencing technology, many laboratories have produced a large amount of single-cell transcrip-
tome data of blood and tissue samples from patients with autoimmune diseases, which enables in-depth studies of the relationship between 
gene transcription and autoimmune diseases. However, there is still a lack of a database that integrates the large amount of autoimmune disease 
transcriptome sequencing data and conducts effective analysis. In this study, we developed a user-friendly web database tool, Interactive Anal-
ysis and Atlas for Autoimmune disease (IAAA), which integrates bulk RNA-seq data of 929 samples of 10 autoimmune diseases and single-cell 
RNA-seq data of 783 203 cells in 96 samples of 6 autoimmune diseases. IAAA also provides customizable analysis modules, including gene 
expression, difference, correlation, similar gene detection and cell–cell interaction, and can display results in three formats (plot, table and pdf) 
through custom parameters. IAAA provides valuable data resources for researchers studying autoimmune diseases and helps users deeply 
explore the potential value of the current transcriptome data. IAAA is available.
Database URL: http://galaxy.ustc.edu.cn/IAAA
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Introduction autoimmune diseases helps to discover specific cell subtypes 
associated with the disease and can then be further used to Epidemiological studies have shown that autoimmune dis-
identify candidate genes for drug targets (5), whose expression eases occur in up to 3–5% of the general population (1). The 
signals are often submerged in bulk RNA-seq data. In gen-pathogenesis of autoimmune diseases is diverse, and there is 
eral, these transcriptome-wide scale studies have accumulated strong heterogeneity between patients and different affected 
many valuable data resources for the research of autoimmune parts, making it a great challenge to develop effective drugs to 

cure these diseases without side effects (2). High-throughput diseases and greatly facilitate the identification of poten-
transcriptome sequencing (RNA-seq) technology, especially tial biomarkers for disease classification and diagnosis and 
single-cell RNA sequencing (scRNA-seq), has been widely candidate drug targets (6).
used to systematically delineate autoimmune disease-relevant In recent years, researchers have developed multiple 
genes and their functions at disease stages (3). scRNA-seq autoimmune disease-related databases, such as dAUTObase 
analysis enables a deeper understanding of the microenviron- (7), The Autoimmune Disease Database (AIDB) (8) and 
ment and the intercellular heterogeneity of peripheral blood A Gene and Autoimmiune Disease Association Database 
or lesions in autoimmune diseases (4). Comparison of the (GAAD) (9), to facilitate studies on autoimmune dis-
scRNA-seq data between healthy people and patients with eases. Among them, dAUTObase provides the incidence 
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of autoimmune diseases in different countries and regions 
around the world, and AIDB and GAAD provide informa-
tion on the relationship of critical genes with relevant diseases. 
However, compared to the large amount of transcriptome 
data of autoimmune diseases that have been accumulated, 
key information, such as cell subtype-specific gene expression 
and cell–cell interactions, which were hidden in these data 
resources, is far from being fully exploited.

In view of the great application potential of transcriptome 
data in clinical disease diagnosis and treatment, especially 
single-cell transcriptome data, and there is currently a lack 
of database dedicated to integrating and mining autoimmune 
disease transcriptome data, we developed IAAA, an autoim-
mune disease transcriptome database website with an online 
interactive data analysis module. IAAA collected published 
bulk RNA-seq data of 929 peripheral blood samples from 10 
diseases, including ankylosing spondylitis (AS), Crohn’s dis-
ease (CD), juvenile idiopathic arthritis, polymyositis, psoriasis 
(PS), dermatomyositis, multiple sclerosis (MS), rheumatoid 
arthritis (RA), systemic lupus erythematosus (SLE) and ulcer-
ative colitis (UC), and scRNA-seq data of 783 203 cells from 
96 samples of 6 diseases, including CD, MS, RA, Sjögren’s 
syndrome (SjS), SLE, systemic sclerosis (SSc) and UC. In the 
bulk RNA-seq analysis section, users can view the expression 
of genes of interest between different diseases, perform dif-
ferential analysis and identify genes with similar expression 
patterns via correlation analysis. In the scRNA-seq analy-
sis section, users can easily view the expression of genes 
of interest in different cell subtypes, obtain genes that are 
differentially expressed in specific cell subtypes under differ-
ent disease conditions and construct the cell–cell interaction 
networks.

Materials and methods
Data collection and processing
We collected autoimmune disease data sets from the Sequence 
Read Archive database (10) and Gene Expression Omnibus 
(GEO) database (11). We collected RNA-seq data for 10 dis-
eases from 12 data sets and scRNA-seq data for 6 diseases 
from 8 data sets. The RNA-seq data included 986 peripheral 
blood samples, while the scRNA-seq data included 783 203 
cells from 96 samples and 6 tissues. For each data set, we 
carefully read the original paper and extracted corresponding 
data annotations regarding tissue, sample and disease.

For bulk RNA-seq data, we used Trimmomatic (12) soft-
ware (LEADING: 3 TRAILING: 3 SLIDINGWINDOW: 4:15 
MINLEN: 40) to trim the sequencing adapters and filter 
out low-quality reads and used STAR (13) (—outSAMtype 
BAM SortedByCoordinate—quantMode TranscriptomeSAM 
GeneCounts) to align the reads to the reference genome hg38. 
We filtered the samples (‘UniquelymappedPercent’ ≥50%, 
‘MultimappedPercent’ ≤40%, ‘UnmappedPercent’ ≤10%, 
and ‘number of total reads’ ≥10e6.5) and used our custom 
Python script to perform gene expression quantification to 
obtain the raw read count matrix. After quantification, we 
used the R package DESeaq2 (14) to normalize the data 
and remove batch effect of data sets (with the parameter 
‘design = ∼ dataset’). We then filtered out the samples with 
fewer than 16 000 expressed genes. In total, we obtained 929 
bulk RNA-seq data sets.

For scRNA-seq data, we downloaded the processed cell–
gene expression matrix. Due to the low quality of the pro-
cessed expression matrix of two data sets (GSE125527 and 

GSE157278), we used 10× Genomics Cell Ranger 6.0.1. to 
reprocess their raw data to obtain the cell–gene expression 
matrix. We used the R package Seurat (15) to take the union of 
genes in all data sets and filtered out genes that were not found 
in the reference genome Encyclopædia of genes and gene vari-
ants (GENCODE) comprehensive gene annotation (version 
GRCh38.p13). We then integrated the data sets and removed 
the cells with fewer than 500 detected genes. Ultimately, we 
obtained a single-cell transcriptome of 783 203 cells from 96 
samples.

We used the R package Harmony (16) to integrate 
different data sets from different tissues and samples 
(‘kmeans_init_nstart’ = 20 and ‘kmeans_init_iter_max’=100) 
and used Uniform Manifold Approximation and Projection 
(UMAP) to perform further dimension reduction illustration 
of the Harmony space (’dims’ = 20). We used the Louvain 
algorithm to cluster the cells (‘resolution’ = 0.8) and used the 
R package SingleR (17) to annotate the cell clusters based on 
the expression of known marker genes. The cells of the same 
tissue from different data sets were closely clustered together 
in the UMAP after Harmony integration. To identify potential 
cellular communication between cell subtypes, we applied the 
CellPhoneDB (18) algorithm to the scRNA-seq profiles. We 
removed the ligand–receptor pairs in which ‘Receptor1’ and 
‘Receptor2’ were both ‘ligands’ in the CellPhoneDB results.

Framework
The IAAA is a website freely available to all users and auto-
matically adjusts to the users’ devices and browsers. Users 
can visit this website on desktop, tablet and mobile phone 
without logging in. The website is built by Python’s Django 
framework combined with jQuery to achieve data interaction 
through AJAX. The backend program uses scanpy (19) for 
data storage and calculation.

The user obtains the analysis result by submitting the input 
form to the backend. First, the program will obtain the form 
information from the front frontend, and then, the program 
will check whether the parameters are correct. If an error 
occurs, an error warning is returned. If the input parameters 
are all correct, the program will obtain data from the back-
end and perform calculations. Finally, the program returns the 
analysis results from the backend to the frontend (Figure 1).

The analysis function framework of IAAA consists of a 
‘form’ and three types of results (‘plot’, ‘table’ and ‘pdf’) 
(Figure 2A). Each analysis function with ‘form’ can return one 
or more types of results (Figure 2B).

Each analysis function of IAAA provides a form with basic 
parameters, advanced parameters and submit buttons. The 
basic parameters are used to describe the basic characteris-
tics of the input data (such as disease type and gene set). 
The basic parameters also include a ‘downsample’ function to 
support the selection of downsampled data from the original 
scRNA-seq data set for analysis in case the original scRNA-
seq data set is too large to be displayed on the frontend. 
Advanced parameters include optional parameters that affect 
the visualization effect (such as font size and dot size). Users 
can customize these parameters and click the submit button 
(‘plot’, ‘table’ and ‘pdf’) to return the corresponding analysis 
results.

The result returned by the ‘plot’ function is a data visual-
ization interactive page based on ECharts, which can return 
charts such as histograms, scatter plots and heatmaps. Users 
can interact with charts to explore data and obtain more



Figure 1. Overview of the IAAA database. The user can submit a custom form; the background obtains data from the database according to the form 
and finally checks whether the program performs the analysis function correctly. Returns the result of the analysis upon success and returns an error 
warning in the event of failure.

information. If the user wants to view and download the data 
of the drawing chart, it can be obtained through the ‘table’ 
function. The ‘pdf’ function returns figures in PDF format. 
Parameters with ‘only pdf’ mean that this parameter only 
supports the image results in ‘pdf’ format.

Results
Analysis modules
General (bulkRNA & scRNA)
This page provides a search function. The user can enter the 
gene name (e.g. IL6) or disease (e.g. SLE) to check whether 
they exist in the bulk RNA-seq/scRNA-seq data and view rel-
evant annotation information (Supplementary Figure S1A–B). 
Gene-related information was collected from the GeneCards 
website; disease-related information was collected from the 
literature (20–37). In the ‘scRNA analysis’ section, users can 
view the distribution of cells from different diseases or cell 
subtypes in a UMAP scatter plot (Figure 3A, Supplementary 
Figure S1C–F).

Expression profiling (bulkRNA & scRNA)
IAAA allows users to visualize the expression of genes of 
interest (gene symbol as input) or gene set (upload txt file) 

in different autoimmune diseases from both bulk RNA-seq 
and scRNA-seq data. These results can be presented in the 
form of boxplots, dotplots or UMAP plots (only available in 
the ‘scRNA analysis’ section) or in the form of a standardized 
expression table. In the ‘scRNA analysis’ section, in addition 
to visualizing the expression of specific diseases, one can also 
view the gene expression in specific cell subtypes. For example, 
users can view the expression of genes related to the type II 
interferon response (genes: STAT1, IRF1, HLA-drb5, HLA-
DPA1, HLA-f, HLA-E, HLA-C, HLA-DQB1, HLA-DQA1, 
HLA-DRB1, HLA-B, HLA-DRA, HLA-DPB1 and HLA-A) 
(38) in all samples of the bulk RNA-seq data and all cells of the 
scRNA-seq data from healthy people and patients with SLE, 
UC and MS (Supplementary Figure S2A–D), where no signifi-
cant differential expression was observed between the sample 
groups. One can also view the expression of type II interferon 
response genes in specific cell subtypes in scRNA-seq data by 
selecting the cell subtype of interest (e.g. macrophage) (Sup-
plementary Figure S2E–F). We can see that the expression of 
this gene set in macrophages in MS patients is significantly 
different from that in healthy people (Figure 3B).

Differential analysis (bulkRNA & scRNA)
Compared with healthy control individuals, patients with 
autoimmune diseases usually express abnormally upregulated 



Figure 2. User-defined platform for functional analyses and output of analysis results. (A) The user-defined platform consists of three parts: basic 
parameters, advanced parameters and a button. The basic parameters include the parameters necessary for analysis, and the advanced parameters 
include several optional parameters. There are three buttons, corresponding to three types of results. (B) The ‘plot’ button returns the interactive analysis 
interface (left). The ‘table’ button returns the data table of the analysis results (middle). The ‘pdf’ button returns the PDF graph generated by the analysis 
results (right).

or downregulated genes. The genes differentially expressed 
in autoimmune diseases (e.g. cytokines and chemokines) 
are often potential targets for drugs. A recent study has 
shown that DESseaq2 may cause high false positive rate on 
RNA-seq data from human samples (39); therefore, IAAA 
used DESeaq2 for bulk RNA-seq normalization but not 
for differential analysis. IAAA allows users to choose a 
customized method for differential analysis (‘wilcoxon’ for 
Wilcoxon rank-sum test, ‘t-test’ for Student’s t-test and ‘t-
test_overestim_var’ for Student’s t-test while overestimating 
the variance of each group). IAAA allows users to select differ-
ent ‘P value’ and ‘log2foldchange’ as thresholds to screen for 
genes that are differentially expressed in a certain autoimmune 
disease of interest and display their expressions as volcano 
plot or statistical tables (Supplementary Figure S3). Users can 
thus compare the gene expression differences between dif-
ferent diseases. In the ‘scRNA analysis’ section, users can 
also compare the gene expression of different cell subtypes 
in the same diseases and that of the different diseases in the 
same cell subtype. For example, users can compare the gene 
expression differences between MS and healthy people in all 

cells (Supplementary Figure S3A–D), compare gene expres-
sion differences between MS and healthy B cells (Supplemen-
tary Figure S3F–G) and compare the gene expression differ-
ences between B cells and macrophages in MS (Supplementary 
Figure S3H, Figure 3C).

Correlation analysis (bulkRNA & scRNA)
This module performs pairwise gene correlation analysis for 
any two given gene sets of interest using correlation methods 
such as the Pearson, Spearman and Kendall methods. Before 
using this function, users can first use the ‘Similar Gene Detec-
tion (bulkRNA)’ function to obtain a gene set that is similar 
to a given gene of interest in a specific disease. For example, 
for gene sets related to the type II interferon response, users 
can first obtain the top genes (HLA-DQB1-AS1, HLA-DQA2, 
PSMC4, RNF5, HSPA1B, CNDP2, PSMB9, CTNNBL1 and 
PSME1) whose expressions are highly correlated with genes 
in the type II interferon response through the ‘similar gene 
detection (bulkRNA)’ function (Figure 3D, Supplementary 
Figure S4A) and then visualize the correlation between the 
expressions of the two gene sets in all cells in SLE patients 



Figure 3. Examples of IAAA outputs. (A) UMAP plot showing the distribution of cells from healthy controls and several autoimmune diseases (i.e. CD, 
MS, SLE, SSc, SjS and UC) in scRNA-seq data. The UMAP plot is generated by the ‘general’ functions in IAAA. (B) Boxplot showing the expression of 
the type II interferon gene set (STAT1, IRF1, HLA-DRB5, HLA-DPA1, HLA-F, HLA-E, HLA-C, HLA-DQB1, HLA-DQA1, HLA-DRB1, HLA-B, HLA-DRA, 
HLA-DPB1 and HLA-A) in macrophages for scRNA-seq data from SLE, UC and MS patients. The boxplot is generated by ‘expression profiling’ functions 
in IAAA. (C) Volcano plot showing the differentially expressed genes between B cells and macrophages in MS patients for the scRNA-seq data. The 
volcano plot is generated by ‘differential analysis’ functions in IAAA. (D) The Pearson correlation of genes with the type II interferon gene set in bulk 
RNA-seq data generated by ‘similar gene detection’ functions in IAAA. (E) The Pearson correlation between two gene sets (type II interferon gene set 
and the high correlation gene set by similar gene detection functions) in bulk RNA-seq data by correlation analysis functions (scatter plot). (F) Circos plot 
showing the receptor–ligand pairs among B cells, CD14+ monocytes (CD14_Mono), CD16+ monocytes (CD16_Mono) and macrophages from PBMCs in 
SLE patients. The volcano plot is generated by ‘cell–cell interaction’ functions in IAAA. Mono, monocytes.

(Figure 3E, Supplementary Figure S4B) and their correla-
tion in CD14 monocyte and CD16 monocyte in SLE patients 
(Supplementary Figure S4C–D).

Similar gene detection (bulkRNA)
With this function, users can quickly identify genes that 
are similar in expression to a given set of genes of interest



(e.g. drug target). Users can choose to search for those sim-
ilarly expressed genes across the data set of one disease or 
multiple diseases. This function will report a list of genes with 
similar gene expression patterns to the input gene across any 
selected data sets (Figure 3D, Supplementary Figure S4A).

Cell–cell interaction (scRNA)
Identifying cell–cell interactions is essential to delineate 
the functions of cells in the immune system. We used 
CellPhoneDB, a repository of ligands, receptors and their 
interactions, to predict the cellular interactions between the 
cell subtypes based on scRNA-seq data from each disease 
and tissue. Users can visualize the interactions between 
different cell subtypes and select different ‘P value’ and 
‘mean’ (receptor–ligand average expression) thresholds to 
screen receptor–ligand pairs with different significance lev-
els. For example, users can view the cell–cell interactions 
and their associated ligand–receptor pairs between B cells, 
mono cells and macrophages in SLE-PBMC data (Figure 3F, 
Supplementary Figure S5).

Results availability
IAAA provides the analysis results in PDF format. Users can 
download the PDF and modify the image with Adobe Illus-
trator. If the current analysis function of the database is not 
enough to meet the needs of users, the website also pro-
vides data tables for download for further analysis. For each 
table, a ‘download’ button is provided. Note that if one wants 
to download the entire data table, he/she needs to change 
the parameter of the ‘show’ option to ‘ALL’. In addition, 
‘BulkRNA Meta’ and ‘scRNA Meta’ under ‘DataSets’ in the 
navigation bar provide metadata of the bulk RNA-seq data 
and scRNA-seq data, respectively, and ‘Article Meta’ provides 
research-related information about the data we collected.

Documentation
Documentations are provided under the ‘Docs’ section, which 
includes ‘Q&A’, ‘Help’ and ‘About’. For beginners of IAAA, 
one can see the list of frequently asked questions and answers 
on the website under ‘Q&A’. In addition, one can also view 
the meaning of the parameters of each analysis function in 
‘Help’. If one wants to know more about us, he/she can view 
the ‘About’ page. ‘Examples’ provides a tutorial video and 
comment area for each analysis function. Users can follow 
the video step by step to learn how to use the analysis tools. 
If one has any questions or suggestions about IAAA, he/she 
can also leave comments in the comment area. We will make 
improvements according to users’ constructive suggestions.

Discussion
The development of next-generation sequencing technology 
has greatly promoted the research of autoimmune diseases 
and has also generated a large amount of data. How to 
effectively analyze these data is a great challenge for biomed-
ical researchers. The IAAA database we developed integrates 
a large amount of bulk transcriptome and single-cell tran-
scriptome data of autoimmune diseases and provides cor-
responding transcriptomic data analysis modules, including 
gene expression, differential analysis, correlation, similar gene 
detection, cell–cell interaction and other analysis modules. 
Users can realize complex bulk and single-cell transcriptome 

data analysis with simple webpage operations and obtain intu-
itive analysis results. Overall, IAAA can help users quickly 
explore and mine transcriptomic data of autoimmune dis-
eases.

The IAAA database consists of two parts, ‘scRNA anal-
ysis’ and ‘bulkRNA analysis’, which, respectively, include 
the most complete transcriptome and single-cell transcrip-
tome data of autoimmune diseases thus far. We will contin-
uously collect newly generated single-cell transcriptome data 
and update our database in real time. In addition, the cur-
rently rapidly developing single-cell multi-omics technology 
allows us to obtain multiple omics information in a single 
cell at the same time, allowing us to analyze the cell state 
in disease states from more dimensions to gain a deeper 
understanding of the complex molecular mechanism of the 
occurrence and development of autoimmune diseases. For 
example, by integrating single-cell chromatin accessibility and 
single-cell transcriptome data and identifying peak-to-gene 
linkages, it is helpful to analyze the regulatory mechanism 
of disease (40). In the future, we will integrate multi-omics 
data in IAAA and provide corresponding analysis function
modules.

In general, the use of bioinformatics methods to ana-
lyze omics data has become a growing need. The main 
purpose of IAAA is to integrate a large amount of autoim-
mune omics data and provide a convenient and fast anal-
ysis tool to autoimmune disease researchers. In the future, 
we will supplement more autoimmune disease omics data, 
especially single-cell multi-omics data, and improve and add 
more analysis functions according to the users’ construc-
tive feedback to help users study autoimmune diseases more
deeply.

Supplementary data
Supplementary data are available at Database Online.
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