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Chromatin accessibility landscapes of skin cells in
systemic sclerosis nominate dendritic cells in
disease pathogenesis
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Jeffrey Granja2,3, Chuang Guo 1, Jun Lin 1, Rui Li2,3, Karen Tolentino2,3, Gabriela Kania4, Oliver Distler4,

David Fiorentino3, Lorinda Chung3,5, Kun Qu 1,6,7✉ & Howard Y. Chang 2,3✉

Systemic sclerosis (SSc) is a disease at the intersection of autoimmunity and fibrosis.

However, the epigenetic regulation and the contributions of diverse cell types to SSc remain

unclear. Here we survey, using ATAC-seq, the active DNA regulatory elements of eight types

of primary cells in normal skin from healthy controls, as well as clinically affected and

unaffected skin from SSc patients. We find that accessible DNA elements in skin-resident

dendritic cells (DCs) exhibit the highest enrichment of SSc-associated single-nucleotide

polymorphisms (SNPs) and predict the degrees of skin fibrosis in patients. DCs also have the

greatest disease-associated changes in chromatin accessibility and the strongest alteration of

cell–cell interactions in SSc lesions. Lastly, data from an independent cohort of patients with

SSc confirm a significant increase of DCs in lesioned skin. Thus, the DCs epigenome links

inherited susceptibility and clinically apparent fibrosis in SSc skin, and can be an important

driver of SSc pathogenesis.
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Systemic sclerosis (SSc), also known as scleroderma, is a
chronic multi-system disease that is characterized by vas-
cular damage, inflammation, and progressive fibrosis of the

skin and internal organs. Almost all patients with SSc have skin
involvement despite the heterogeneity of the disease, and fibrosis
leads to internal organ dysfunction that is the most common
cause of death in these patients1,2. Tightened and thickened skin
is the clinical hallmark of SSc, and is often associated with distinct
patterns of organ involvement, disease severity, and survival3.
Previous studies focused on identifying the signaling pathways
that were involved in fibrosis of the internal organs and ultimately
to reduce the mortality rate of SSc4. Current studies indicate that
genetic predisposition combined with environmental triggers,
such as chronic tissue damage, vascular insult, or incipient cancer
can lead to local inflammatory microenvironments1,5. However,
the epigenetic regulatory mechanism of SSc and how the immune
cells in the skin microenvironment contribute to the disease
remain largely unknown.

Because only 1% of the human genome is accessible in any
given cell type, the identity and pattern of accessible DNA is
highly informative of cell states and regulatory programs6. Recent
innovations in epigenetic profiling have led to the development of
Assay of Transposase Accessible Chromatin with sequencing
(ATAC-seq), enabling direct and sensitive detection of open
chromatin regions and generation of high-resolution chromatin
maps from as few as 500 cells7, or even in single cells8,9. ATAC-
seq has been widely applied in many biomedical systems, such as
cancer and immunity, to study the epigenetic landscapes and
regulomes that drive disease pathogenesis in vivo6,10–12.

Here we survey the genome-wide active regulatory elements in
fresh human skin cells in vivo, by performing ATAC-seq on skin
samples from healthy volunteers, as well as affected and unaf-
fected skin from patients with SSc. We create high-resolution
epigenetic regulomes of multiple cell types in normal and SSc skin
samples, and perform in-depth analysis of the regulatory
mechanisms of the disease. Our results suggest that DCs display
the strongest correlation with skin fibrosis and the greatest
alteration of epigenome than the other cell types. Our study thus
provides a better understanding of the functions of DCs in
driving SSc and a rich source of candidates for therapeutic targets
to treat the disease.

Results
Chromatin accessibility landscapes of 8 cell types from normal
human skin in vivo. To establish a baseline normal chromatin
landscape, we first harvested cells directly from fresh human skin
and analyzed the genome-wide chromatin accessibility maps of
19 samples from 8 cell types resident in the skin, including CD4+

and CD8+ T cells (CD4s, CD8s), dendritic cells (DCs), Langer-
hans (LCs), endothelial cells (ECs), macrophages (Macs), fibro-
blasts (Fibs), and keratinocytes (KCs) (Fig. 1a, Supplementary
Fig. 1a, b, Supplementary Data 1-2, see Methods). Each ATAC-
seq library was sequenced to obtain an average of more than 25
million paired-end reads, in total comprising over 500 million
measurements (Supplementary Data 3). We used a published
ATAC-seq pipeline13 to analyze raw sequencing data and identify
focal peaks of chromatin accessibility that typify active regulatory
elements. After filtering and quantile normalization, we identified
a total of 104,223 high-quality accessible elements across these
8 skin resident cell types.

Transcription start site (TSS) enrichment and read length
distribution analysis of all normal samples demonstrated the
high quality of the dataset (Supplementary Fig. 1c−d), and the
Pearson correlation coefficients of all the samples suggested
excellent reproducibility between the biological replicates of

most individual cell types (Supplementary Fig. 1e). For each cell
type, ATAC-seq successfully detected open chromatin signals
around lineage-specific marker genes (Supplementary Fig. 1f).
A snapshot of the ATAC-seq profiles indicated high signal-to-
noise ratio of these data, capturing the known enhancer and
promoter elements previously identified by histone H3 lysine 27
acetylation chromatin immunoprecipitation sequencing in a
large compendium of cells surveyed by the ENCODE project
(Fig. 1b).

Since the regulatory elements in skin biopsies and cells from
in vitro expansion are quite different14, we sought to quantify the
potential differences in the chromatin landscape of cells directly
harvested from fresh skin compared to cells from tissue culture.
Take fibroblasts as an example, we found 12768 accessible
elements (over 12% of all detected accessible sites) were
significantly differential (|log2 Fold change | > 4, P value < 0.05)
(Supplementary Fig. 2a–c), indicating that the native milieu of
skin cells does differ from that of skin cells in culture at the
chromatin level. Similar results were also obtained in KCs, where
8% of detected peaks in KCs from skin biopsy were found
significant differential (|log2 Fold change | > 4, P value < 0.05)
from that of the cultured cells (Supplementary Fig. 2d–e).

As distal enhancers (peaks>1 kb away from the closest TSS)
provide significantly improved cell type classification compared
to promoters and transcription profiles15, we then performed
unsupervised clustering and principal component analysis based
on chromatin accessibilities of the distal enhancers for normal
samples, and found that all the samples were precisely classified
into each individual cell type (Fig. 1c, Supplementary Fig. 1g),
confirming the high quality of the dataset. Furthermore, our
results suggested the similarity of the chromatin open state of
dermal macrophages and CD31+ endothelial cells. The correla-
tion analysis across different cell types from SSc patients also
showed a strong correlation between Macs and ECs (Supple-
mentary Fig. 3a). Since dermal Macs and DCs were both
differentiated from monocytes, our normalized ATAC-seq
profiles showed that chromatin around several marker genes of
myeloid cells, such as ITGAX (CD11C), CD80, CD68, HLA-DRA,
TLR4 were indeed more accessible in Macs and DCs than other
cell types (Supplementary Fig. 3b), indicating the reliability of our
ATAC-seq data of macrophage. Thus, we obtained the first
reliable chromatin accessibility profiles of multiple rare skin cell
types harvested directly from human skin in vivo, which are
critical for physiologically relevant downstream analysis, high-
lighting the value of our study.

Cell type-specific chromatin accessibility in normal skin. We
next explored the regulomes of different cell types in normal skin
from healthy individuals. Peaks from each cell type were com-
pared with the remaining samples, and a total of 14243 significant
cell-type-specific peaks were identified (P value < 0.005, |log2 Fold
change | > 2, Fig. 2a). These peaks were then clustered into 5
major groups representing the specific chromatin accessible sites
of T cells, DCs and LCs, Fibs, ECs and Macs, and KCs. Peaks
around functional marker genes for each cell type were also
shown. Non-repetitive top enriched genes (Supplementary
Data 4) and biological functions (Supplementary Data 5) for each
cluster were annotated using the genomic regions enrichment of
annotations tool (GREAT)16 (Fig. 2b). We noted that these top
enriched GO terms for each peak cluster were also consistent with
the identities of each cell group. For example, T cell-specific peaks
were enriched with biological functions such as regulation of
immune system processes (P value < 10−81) and leukocyte acti-
vation (P value < 10−78), while KC-specific peaks were enriched
for keratinocyte differentiation (P value < 10−13).
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Since the chromatin accessible patterns of dermal macrophages
and CD31+ endothelial cells are similar, signature peaks of
macrophages and endothelial cells were both enriched the
biological functions about angiogenesis and wound healing
(Fig. 2b, Supplementary Fig. 4a, b). Macrophages are very plastic
cells, and one aspect of its heterogeneity is the tissue specializa-
tion of resident macrophages17. The dermal macrophages have
been reported involved in angiogenesis through the expression of
vascular growth factor18. Our results further suggested that the
epigenetic regulome of macrophage residing in the dermal layer is
very different from that of other myeloid cells but similar to that
of endothelial cells.

Because transcription factors (TFs) bind to their cognate DNA
sequences (termed motifs), by integrating the known TF motifs
with DNA accessibility data from ATAC-seq, we can predict the

regulome of each cell type6. We first obtained a total of 242
vertebrate TF motifs from the Jaspear database19, identified their
genome-wide distribution using HOMER20, and overlaid these
sites with the differential ATAC-seq peaks shown in Fig. 2a. We
then used Genomica21 to identify motifs that were significantly
enriched or depleted in each sample, and thereby constructed the
TF regulomes of each cell type (Fig. 2c, Supplementary Data 6).
We found that most cell-type-specific TFs were consistently
enriched with their corresponding cell type from our data. For
instance, RUNX and GATA1, two known T cell regulators22,
were significantly enriched in CD4+ and CD8+ T cells. IRF and
NFκB, critical TFs for DC function and development23, were
strongly enriched in DC-specific peaks. As another example, TFs
such as TP63, KLF4, and GRHL2, which has been well-
characterized in regulating KC differentiation, were found
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Fig. 1 Landscape of DNA accessibility in 8 cell types from normal skin in vivo. (a) A schematic outline of the study design depicting the workflow for the
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enriched in KC-specific peaks24. Very few TFs were found
enriched in multiple cell types, such as the TEAD2 and ETS
family. These results provide a comprehensive picture of
regulomes for most of the skin resident cells in vivo.

A recent study has shown that disease-associated single-
nucleotide polymorphisms (SNPs) were highly enriched in
noncoding DNA regulatory elements characterized by accessible
chromatin15. By measuring the activity of regulatory elements
that overlap regions with associated functional variation from
GWAS, it is now possible to more accurately predict the specific
cell type that is affected by genetic variants linked to diverse
human diseases15. We then applied this method to predict the
possible pathogenic cell types for SSc based on SNPs associated
with immunological and skin-related diseases (Supplementary
Data 7). As expected, SNPs associated with ulcerative colitis,
celiac disease, and Crohn’s disease were enriched in T cell-specific
chromatin accessible sites (Supplementary Fig. 5a, Supplementary

Data 8), consistent with results from previous studies11,25.
Intriguingly, SSc-associated SNPs were predominantly enriched
in DCs, especially at strong associations with the highest level of
statistical significance (P value < 10−5, Supplementary Fig. 5a, b),
indicating that DCs may contribute to this disease through an
unknown mechanism.

To further evaluate the pathogenic effects of different cell types
to SSc, we downloaded the published microarray gene expression
data of SSc affected skin (a total of 105 arm samples obtained
from 30 patients) at 3-4 time points along the treatment of
mycophenolate mofetil (MMF)26 and performed a correlation
analysis of the average expressions of cell type-specific genes
(Supplementary Data 4) versus the degrees of fibrosis of the skin
from SSc patients, measured by the modified Rodnan skin scores
(mRSS)27. To remove the impact of MMF treatment on the
correlation analysis, genes response to the MMF treatment
(Supplementary Fig. 6a, Supplementary Data 9) were removed

2   Log 2  8 

Intensity

Top enriched GO terms -Log10(P value)

C1_3912

C2_5379

C3_1089
C4_370

C5_3493

Cluster_Num

Regulation of immune system process 81
Leukocyte activation

Lymphocyte differentiation
Positive regulation of immune system process 

T-cell differentiation
Regulation of T-cell activation

T-cell activation 
78
57
57
51
48
35

Positive regulation of immune system process
Regulation of defense response
Regulation of lymphocyte activation
Inflammatory response
Immune effector process

Immune-activating cell surface receptor pathway
Lymphocyte activation

Regulation of innate immune response
Positive regulation of defense response

76
55
44
41
39
39
36
33
33

Actin filament bundle assembly
Regulation of extracellular matrix disassembly
Tissue remodeling

4
4
4

Wound healing
Hemostasis

6
6

Keratinocyte differentiation
Regulation of toll-like receptor 2 signaling pathway
Isoprenoid biosynthetic process

Regulation of Notch signaling pathway
Sterol biosynthetic process

Regulation of body fluid levels

6

13
8
7
4
4

Cell Type

a

c

Depleted            Enriched
IR

F
1

IR
F

2

N
F

kB
-P

65
A

T
F

2
N

F
kB

-P
50

T
C

F
4

T
C

F
L2

B
O

R
IS

T
C

F
3

C
T

C
F

R
U

N
X

B
A

T
F

G
A

TA
1

E
T

S
IS

R
E

IR
F

P
IT

X
1

P
63

P
53

M
A

F
K

G
R

H
L2

K
LF

4
K

LF
3

E
K

LF
K

LF
10

K
LF

9
E

G
R

2
S

P
1

S
LU

G

E
T

S

T
E

A
D

2
E

2F
3

N
F

1

M
ac

ECFi
b

KCCD4
CD8
DC LC

BRAF 
STAT5B 
STAT3 
STAT4 
CXCR4 
CD69 
CD28

LR10 
TLR1 
TLR6 
CD86 
CD80 
ZBTB46 
IL10 
HLA-DOA 
HLA-DRA

COL1A2 
COL12A1
ITGA8 
ACVRL1

PDGFC 
KRTAP19-8 
TP63
KRT5 
KRT80

CD4
CD8
DC
LC

EC
Mac

Fib

KC

Cell type

b

-50     -Log(P value)       50

CD4
CD8
DC
LC

Fib

EC
Mac

KC

Fig. 2 Cell type-specific chromatin accessibility in a skin biopsy from healthy donors. (a) Heatmap of the normalized ATAC-seq intensities of cell type-
specific peaks from healthy donors. Each row is a peak, and each column is a sample, with color-coded cell types (top panel). Clusters shown in the sidebar
represent cell-type-specific peaks of CD4 (CD4+ T cells) and CD8 (CD8+ T cells) (C1), DC (dendritic cells) and LC (Langerhans cells) (C2), Fib
(fibroblasts) (C3), EC (endotheliocytes) and Mac (macrophages) (C4), and KC (keratinocytes) (C5) respectively. Functional marker genes in each cluster
were shown on the right. Source data are provided as a Source Data file. (b) Top enriched GO (Gene Ontology) terms of peaks in each cluster. P values
(Binom Raw P value) were calculated using the binomial statistic test in GREAT. Source data are provided as a Source Data file. (c) Enrichment of known
transcription factor (TF) motifs in cell type-specific accessible elements for all normal samples. Each row is a TF motif and each column is a sample. The
color bar represents the significance of enrichment estimated from Genomica, where red indicates enriched and blue depleted. Source data are provided as
a Source Data file.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19702-z

4 NATURE COMMUNICATIONS |         (2020) 11:5843 | https://doi.org/10.1038/s41467-020-19702-z | www.nature.com/naturecommunications

www.nature.com/naturecommunications


from the input gene list before the correlation analysis was
performed (see Methods). We found that the average expressions
of DC signature genes were most significantly positively
correlated with mRSS (P value = 1.5 × 10−5, R= 0.41, Fig. 3a,
Supplementary Data 10) among the six-cell types examined,
suggesting that DC was the most relevant cell type to disease
pathology. A T cells gene signature was also highly correlated
with mRSS (P value = 0.0013, R= 0.31), while those of the other
cell types, such as Fib, LC, EC, and KC were not significant (P
value > 0.05). We further performed a pair-wise comparison of
cell signature gene expressions obtained at the time point when
the mRSS of the same patient is at the lowest (Low) versus the
highest (High), and we found that the expressions of DC
signature genes were significantly higher in skin biopsy at higher
mRSS levels (Student’s paired two-tailed t-test P value = 0.011,
Fig. 3b). Other cell types, however, showed no significant
differences. These results suggested that DCs may be a critical
contributor of SSc.

Cell type-specific regulome divergence in normal, unaffected,
and affected skin. To further illustrate the regulome divergence
of skin from normal and SSc patients, we followed the experi-
mental design first employed by Whitfield et al.28, and obtained
biopsies of clinically affected skin from the distal forearms and
clinically unaffected skin from the lower backs of SSc patients (see
Methods). Each skin sample was subjected to FACS to isolate
distinct cell types followed by ATAC-seq (Supplementary Fig. 1b,
Supplementary Data 1–3). Principal component analysis of all the
samples clearly separated major cell types, and each individual

clinical state was further distinguished in DCs (Supplementary
Fig. 7a).

To investigate the differences in chromatin accessibility and
identify the epigenetic signatures that underlie SSc, we performed
a pair-wise comparison of ATAC-seq profiles between clinically
affected vs. unaffected vs. normal skin biopsies on T cells, DCs and
fibroblasts, for which sufficient biological replicates were
sequenced. Using a similar confidence level (P value < 0.01, |
log2 Fold change | > 2), we identified significantly more differential
peaks in DCs (15869) than CD4+ T cells (3786), CD8+ T cells
(3048), and fibroblasts (2179), suggesting that DCs may bear the
most chromatin divergence between healthy and disease states
(Fig. 4a–d). The differential peaks were then grouped into 6
clusters depending on their enrichment in normal, unaffected and
affected cells, and the proportions of each cluster versus the
differential peaks in each cell type were also evaluated (Fig. 4e–h,
Supplementary Fig. 7b, Supplementary Data 11). For macrophage
and EC, where only 1 sample in normal control or unaffected and
affected skin were obtained, we thereby were unable to screen out
the cell type-specific signature peaks with statistical power.
Differential peaks of these two cell types were then defined by
|log2 Fold change | > 2, however the up-regulated peaks in affected
macrophage and EC were not enriched to any autoimmune
fibrosis relevant GO terms (Supplementary Fig. 7c, d).

To further investigate the disease relevance and biological
functions of these differential peaks, we performed disease and
gene ontology analysis of all the peaks in each cluster for each cell
type. We found: (1) Peaks in cluster 5, which were highly
enriched in affected cells compared with normal and unaffected

a b

0 10 20 30 40

S
ig

na
tu

re
 s

co
re

R = 0.31
P = 0.0013

mRSS

0 10 20 30 40 0 10 20 30 40

0 10 20 30 40 0 10 20 30 40 0 10 20 30 40

mRSS mRSS

mRSS mRSS mRSS

R = 0.41
P = 1.5×10-5

R = 0.17
P = 0.076

R = 0.19
P= 0.054

R = 0.19
P = 0.052

R = -0.20
P = 0.033

S
ig

na
tu

re
 s

co
re

0.5

0.4

0.3

0.2

0.8

0.7

0.6

0.5

0.4

1.2

1.0

0.8

1.1

1.0

0.9

0.8

0.7

0.6

0.5

1.1

1.0

0.9

0.8

0.7

0.6

0.5

1.1

1.0

0.9

0.8

0.7

0.6

T cell DC LC

EC Fib KC

0.50

0.45

0.40

0.35

0.75

0.70

0.65

0.60

0.55

0.90

0.85

0.80

0.75

0.70

0.95

0.90

0.85

0.80

1.00

0.95

0.90

0.85

S
ig

na
tu

re
 s

co
re

Low High Low High Low High

Low High Low High Low High

T cell
P = 0.21

DC
P = 0.011

LC
P = 0.13

EC
P = 0.66

Fib
P = 0.93

KC
P = 0.50

0.95

0.90

0.85

0.80

0.75

S
ig

na
tu

re
 s

co
re
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cells, representing an SSc disease signature. A number of
autoimmune diseases, including SSc, were significantly more
enriched in these peaks in DC (P value ~10−14) compare with
T cells and fibroblasts (P value ~ 1, Supplementary Fig. 8,
Supplementary Data 12), samλas immune relevant biological
functions (Supplementary Fig. 9), indicating a hidden epigenetic
divergence in DCs that may be an underestimated factor in
driving SSc. (2) Peaks in cluster 4 were more accessible in SSc
patients compared with healthy donors, representing a patient
signature. Disease associated biological functions such as
“Cellular response to TGFβ stimulus”, “αβ T cell activation”,
“Inflammatory response” were found significantly enriched in
cluster 4 peaks in T cells (P value ~ 10−5, Supplementary Fig. 9a,
b), suggesting that the chromatin states of the dermal T cells of
SSc patients retain inherent abnormalities whether they are in the
lesion or not.

We then sought to illustrate the enriched TFs that regulate each
cluster in each cell type using the Genomica’s module map
algorithm and TF motif analysis6. To our surprise, we observed a

disease-specific TF regulatory pattern exclusively in the differ-
ential peaks in DCs, but not in other cell types. The NFκB and the
STAT family TFs, which were reported to play central roles in
autoimmune disease29,30, were highly enriched in the affected
DCs compared with the normal and unaffected DCs (Fig. 4i). A
“TF footprint” analysis of our ATAC-seq profiles revealed distinct
TFs NFκB and STAT footprints on genomic DNA directly
from clinical SSc affected DCs versus normal cells (Fig. 4j),
suggesting a more pronounced DNA occupancy of NFκB and
STAT1 in DCs from affected SSc skin than their normal
counterpart. These results suggest that DC is the most differential
cell type among three states and may drive SSc through NFκB and
STAT1 signaling pathways. To further investigate which DC
subtype(s) may contribute to the disease, we mapped the disease
specific chromatin accessible sites to the comprehensive single
cell ATAC-seq map of human immune cells that was recently
published31. We found that disease signature peaks were
highly enriched in conventional dendritic cells (cDC), but less
so in plasmacytoid dendritic cells or other myeloid cells
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(Supplementary Fig. 10a–c), suggesting that cDC was the main
pathogenic subtype of dendritic cells.

We next tested whether DCs were more infiltrated in affected
compare with normal skin. To do so, we examined the expression
of ZBTB46 in normal skin from an independent set of healthy
donors and lesional skin from SSc patients. ZBTB46 is a well-
known TF selectively expressed in classical DCs and their
committed progenitors but not by plasmacytoid DCs, monocytes,
macrophages, or other lymphoid or myeloid lineages32 (Supple-
mentary Fig. 11). Importantly, there were significantly more DCs
stained by ZBTB46 in affected SSc skin compared to normal skin
(Fig. 5a, b, P value = 0.0001, one-sided Mann-Whitney U test).
Gene expression profiles from multiple published studies26,33,34

have also shown that gene ZBTB46 were significantly higher
expressed in SSc skin versus normal skin (Fig. 5c, P value= 0.0002,
0.003, 0.00001, one-sided Mann-Whitney U test). These results
further support our hypothesis that DCs play an important role in
the formation of an abnormal inflammatory immune environ-
ment for fibrosis.

DCs play a central role in communication between skin resi-
dent cells in SSc. Reciprocal communication between divergent
skin cell populations plays a key role in skin development,
homeostasis and repair. Disrupted cross-talks between cells
however, may cause skin fibrosis leading to SSc35,36. As such, we
sought to illustrate the interactions between resident skin cells
based on ATAC-seq data, and elucidate the signaling pathways
through which connections were altered in SSc (see Methods).
We first surveyed the chromatin accessibilities of several well-
studied signaling pathways as positive controls, such as NOTCH
and TGFβ which interconnect 4 major cell types in skin and were
also known to associate with tissue fibrosis37,38 (Fig. 6a). We
noticed that the chromatin of several NOTCH and TGFβ
receptors/ligands’ gene loci were more accessible in SSc,

indicating an up-regulation of these pathways in a disease state
between resident skin cells. We then use a circos plot to show the
ATAC-seq signals around selected receptors/ligands in normal
versus affected skin from SSc patients, where the outermost torus
displays the names of the receptors and ligands in each cell type
and the middle and inner torus display the ATAC-seq signals at
these genes’ loci in SSc patients and healthy controls respectively
(Fig. 6b). More specifically, ATAC-seq peaks around NOTCH1
receptor were generally more accessible in affected DCs, and
those of NOTCH1’s ligand DLL4 were more accessible in affected
CD4+ T cells, suggesting the connections between DCs and
CD4+ T cells may become hyperactive through the NOTCH1/
DLL4 pathway in SSc. Similarly, this overstimulated commu-
nication between DCs and CD4+ T cells can also be achieved
through costimulatory signaling (CD86/CD28) and fibrosis-
associated signaling (TGFBR2/TGFB1) pathways39.

In this way, we can nominate the potential communications
between T cells, DCs and Fibs in SSc from limited number of
patients’ samples. We first obtained all the known receptor/
ligand pairs from the Ligand-Receptor Partners (DLRP)
database40 and CellPhoneDB41, and then asked whether the
chromatin around their encoding genes loci were significantly
more/less accessible in disease states. We defined a Strength of
Interaction Alteration (SIA) score for each receptor/ligand pair,
in which a higher SIA value denotes a stronger cell-cell
connection in SSc (see Methods). We identified 80 pairs of
significant altered cross-talks between these cells (Fig. 6c,
Supplementary Data 13, |SIA | > 7). Our results indicated
pervasive intercellular communications altered between skin
resident cells through multiple diverse pathways in SSc
(Supplementary Fig. 12). For instance, there were receptors/
ligands significantly altered in almost all cell–cell communica-
tions in the disease state, such as the down-regulated EFNA5/
EPHA4 (Fig. 6d) and up-regulated IL10/IL10RA interleukin
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signaling pathways (Fig. 6e), whose dysregulation may increase
risk for many autoimmune diseases42,43, yet the epigenetic
mechanism of these pathways driving the autoimmunity and
tissue fibrosis has yet been fully uncovered. Several novel
growth factors and chemokine pathways were also evinced by
our analysis, such as the downregulation of IGF1R/IGF1 and
PGF/NRP1 and upregulation of HBEGF/CD44, XCL2/XCR1

and CCL21/CCR7 pathways etc. However, the roles of these
signaling pathways in mediating autoimmune diseases require
further investigation.

Overall, in fibrotic skin, DCs facilitate the most up-regulated
receptor/ligand interactions (Fig. 6c, Supplementary Fig. 12a, 97-
up/33-down) with other cell types, while CD8+ T cells were
associated with the most down-regulated interactions (Fig. 6c,
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Supplementary Fig. 12c, 43-up/87-down). This analysis high-
lighted the perturbations of cell-cell communications between
DCs and other skin cells in SSc, and provided rich resources of
potential drug targets for the treatment of the disease.

Discussion
Systemic sclerosis is a complex immunogenic and fibrotic disease
for which a “driver” cell type and pathway has not yet been
identified, leading to a lack of targeted therapies for this disease.
Study of the role of the innate immune system in SSc patho-
genesis has been particularly limited by mouse models that do not
have equivalent skin DC populations to those found in human
skin4. Study of DCs in SSc has also been limited by the need for
ex vivo manipulation of immature blood DC subsets with cyto-
kine maturation factors—a system that does not accurately por-
tray disease-specific pathogenic skin DC subsets. Using ATAC-
seq to accurately map open chromatin and transcription factor
signaling sites and predict novel interactive pathways on cell
subsets within SSc skin samples is a unique and physiological way
of looking at the immune and fibrotic landscape in this complex
disease.

In this study, we performed ATAC-seq on 8 different skin cell
types to survey the cell type-specific regulomes in normal skin as
well as affected skin from SSc patients. We observed distinct
patterns of DNA accessibility and regulatory networks of tran-
scription factors in different skin resident cells at both healthy
and disease states. We also observed that DCs possess the greatest
epigenetic differences between the normal, unaffected and affec-
ted skin with the most significant enrichment of autoimmune
diseases. Analysis of SSc-associated SNPs and skin fibrosis also
nominate DCs to be the main epigenetic drivers in the patho-
genesis of SSc. Overall, DCs displayed the greatest differential of
accessible peaks with relevance to autoimmune disease; the
strongest alteration of cell-cell receptor/ligand interactions; the
most significant of disease-associated SNP enrichment; the
strongest correlation with skin fribrosis; and were also found to
highly infiltrate affected skin, suggesting that DCs, which are the
primary antigen‐presenting cells (APCs) that connect innate and
adaptive immunity, may have the greatest impact on skin lesions
at an epigenetic level. Although further investigation is still
required to fully uncover the mechanisms underlying skin
fibrosis, our study provides a better understanding of the func-
tions of DCs, especially cDCs in driving SSc and a rich source of
candidates for therapeutic targets to treat the disease.

The present study has several limitations. First, we studied
relatively small number of patients, in part because we aimed to
isolate multiple primary cell types from lesional and clinically
unaffected skin from each patient. As a result, this study is not
powered to address potential difference associated with known
variables in the disease, such as disease subtypes, autoantibody
repertoires, or the stage of progression from early inflammatory
to later sclerotic disease. Rather, the features that we identified in

this cross sectional study are likely broad present in SSc, while
additional yet to be discovered epigenomic changes drive addi-
tional features indicated above. Second, while comprehensive in
our initial survey, our cell type-specific analyses were not able to
address all relevant cell types in SSc, in particular macrophages
that are present in small numbers in normal skin, which preclude
a comparison of macrophage epigenomic state in normal vs. SSc
skin. Furthermore, cell types that are just now being recognized
and not part of the flow-cytometry based prospective isolation
were not studied. Thus, much remains to be learned about the
complexities of and treatment for SSc. The knowledge generated
in this work sets the stage for future efforts to address these
outstanding and important questions.

Methods
Cell isolation. Before the skin obtaining, informed consent was obtained from each
patient. Ethical approval was obtained from the Stanford Institutional Review
Board (IRB) (No.27804). Informed consent was obtained. Biopsies of clinically
affected and unaffected skin were obtained from arms and backs of SSc patients
respectively. Due to our prior work with macrophage in both normal human skin
as well as in inflammatory skin conditions44,45, we realized that there would be
many fewer inflammatory cells (CD163+ macrophages and CD11c+HLADR+ DCs
in particular) in normal human skin compared to scleroderma and so in order to
get enough cells for analysis from normal human skin, we utilized discarded
abdominoplasty and surgical dog ear tissue (aka large areas of normal skin) to
collect enough cells for analysis, whereas we used a 5 mm punch biopsy from
scleroderma patients. 5 mm skin punch biopsies were digested overnight in dispase
separating the epidermis and dermis, each of which were further digested sepa-
rately into single cell suspension using standard protocols without ex vivo
expansion. Distinct cell types were purified by flow cytometry (FACSAria II Flow
Cytometer, Collection: BD FACSDiva, Software Analysis: FlowJo version 10.6.0).
Prior work from our group has identified distinct non-overlapping populations of
antigen presenting CD45+CD11chiHLA-DRhiBDCA-1+ DCs, and phagocytic
CD45+CD11c−CD163+FXIIIA+ macrophages in normal human skin. DCs in
inflammatory skin conditions do not express BDCA-1, but do express similar high
levels of CD11c and HLADR. In order to maintain comparability across normal
and disease states, we used a unified sorting protocol for both normal and
inflammatory skin samples. The dermis was sorted into 6 populations: dendritic
cells as CD45+CD11chiHLA-DRhi, macrophages as CD45+CD11c−CD163+,
CD4+ T cells as CD45+CD3+CD4+CD8−, CD8+ T cells as CD45+CD3+CD4−

CD8+, endotheliocytes as CD45−CD31+, and fibroblasts as CD45−CD31−. The
epidermis was sorted into CD45+CD1a+ LCs and CD45−CD1a− KCs. The sam-
ples were sorted in their entirety in order to provide enough material for the
ATAC-seq protocol. Post sort purity was >99%. We performed ATAC-seq on each
cell type to map the location and accessibility of active DNA regulatory elements
genome-wide.

ATAC-seq library construction and sequencing. ATAC-seq was performed as
described7. Briefly, skin cells were sorted using a FACSAria II Flow Cytometer.
Samples were lysed in cold lysis buffer (10 mM Tris–HCl (PH 7.4), 10 mM NaCl,
3 mM MgCl2, and 0.1% IGEPAL CA-630) for 3 min on ice to prepare the nuclei.
Immediately after cell lysis, nuclei were centrifuged at 500 × g for 10 min using a
refrigerated centrifuge and the supernatant was discarded. Nuclei extract were then
incubated with the generated Tn5 transposome, 2× TD buffer, and nuclease-free
water at 37 °C for 30 min. After DNA purification with the MinElute Kit (Qiagen),
PCR were performed to amplify the library for 10–12 cycles distinctively according
to a quantitative PCR reaction for optimum cycles. PCR condition was set as, 72 °C
for 5 min; 98 °C for 30 s; and thermocycling at 98 °C for 10 s, 63 °C for 30 s and
72 °C for 1 min.When PCR was accomplished, 2 × 50 paired-end sequencing per-
formed on NextSeq 500 (Illumina) to yield, on average, 30M reads/sample.

Fig. 6 Communications between skin resident cell in SSc compare to normal. (a) Example diagram of the communications between dendritic cells, CD4+,
CD8+ T cells, and fibroblasts through known and predicted SSc pathogenic receptors/ligands which were upregulated in affected skin compare to normal
control. (b) Circos plot of the ATAC-seq signals around the receptors/ligands in (a) in normal versus affected skin from SSc patients. The outermost torus
displays the names of the receptors and ligands in each cell type. The middle and inner torus display the ATAC-seq signals at these genes’ loci in SSc
patients (middle) and healthy controls (inner) respectively. Gene loci that were more accessible in SSc cells were highlighted with shadow. Centre linkers
connect the ligands and their receptors between cell types. The width of the linkers represents the length of the corresponding genes. (c) Strength of
Interaction Alteration (SIA) for each pair of receptor/ligand up-regulated (red) or down-regulated (blue) in an affected state compared to the normal
control. Novel receptor/ligand interactions in SSc were highlighted. The bottom rows display the total number of up-regulated and down-regulated
receptor/ligand interactions between cell types. Source data are provided as a Source Data file. (d–e) Normalized ATAC-seq profiles of the normal vs
affected CD4 (CD4+ T cells), CD8 (CD8+ T cells), DC (dendritic cells) and Fib (fibroblasts) at the EFNA5 and EPHA4 (d) and the IL10 and IL10RA (e)
gene loci.
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Primary data processing and peak calling. ATAC-seq raw data was processed
using the published ATAC-seq pipeline ATAC-pipe13. Sequencing reads were
mapped using the “—MappingQC” module in ATAC-pipe. Adapter sequences
were trimmed and reads were mapped to Hg19 using Bowtie. PCR duplicates were
removed as described7,13. Mapped reads were then shifted +4/-5bp depending on
the strand of the read, so that the first base of each mapped read represented the
Tn5 cleavage position. All mapped reads were then extended to 50 bp centered by
the cleavage position. Reads mapped to repeated regions and chromosome M were
removed. We used the “—PeakCalling”module in ATAC-pipe with options “--p1 3
--q1 5 --f1 1 -w 50”, to call peaks using MACS246. Peaks were then filtered and
enriched regions were identified as those with a posterior probability of >0.99.
Samples from the same cell type classified under the same clinical condition
(normal, unaffected or affected) were grouped for peak calling, and peaks for all
categories were then merged together to generate a unique peak list. Numbers of
raw read counts mapped to each peak at in each sample were quantified by this
module in ATAC-pipe. We then obtained an N × M data matrix where N indicates
the number of merged peaks, M indicates the number of samples, and the matrix
value Di,j represents the raw read counts fall in peak i (i= 1 to N) of sample j (j= 1
to M). This data matrix was then normalized by “normalize.quantiles” function of
“preprocessCore” package in R, and the normalized matrix was used for down-
stream analysis.

Differential analysis. Peak intensity was defined as log2 of the normalized read
counts. T test and Benjamini–Hochberg multiple test were used to calculated the
P value and FDR between any pair of samples.

Regulome divergence between biopsy versus cultured cells. We sought to
quantify the potential differences in the chromatin landscape of cells directly
harvested from fresh skin compared to cells from tissue culture. For fibroblast,
cultured samples were represented by ATAC-seq data collected from the human
skin fibroblast BJ cell line (GSE81807)47. Concomitantly, primary data processing
and peak calling was performed on ATAC-seq data of biopsy fibroblasts that from
healthy donors and human BJ cell line. We then applied above-mentioned dif-
ferential analysis to discern the epigenetic differences between fresh versus cultured
fibroblasts (P value < 0.05, |log2 Fold change | > 2). Same analysis was performed
on keratinocytes from skin biopsy and cultured.

Cell type-specific peak analysis and functional annotation. Differential analysis
was applied for each cell type compared with all other cell types and cell type-
specific peaks were filter with P value < 0.005 (Student T-test), log2 fold change of
mean peak intensity > 2, coefficient of variation of samples in each cell type
(inCov) < 0.5, and coefficient of variation of peak intensity among all samples of
other cell types (outCov) < 0.5. Bed files of peak lists for each cell type were
uploaded to GREAT (version 3.0.0)16, all gene ontology and relevant functional
analysis were performed with options “associating genomic regions with genes 50
kb (basal plus extension model)”. Non-repetitive top enriched biological function
were manually selected and presented. Cell type-specific peaks and their enriched
biological functions for each cell type in healthy controls were identified and
summarized in Supplementary Tables 4, 5.

Construction of cell type-specific transcriptional regulatory networks. All
known motifs of vertebrate transcription factors were obtained from the Jaspear
database19. We identified their genome-wide putative occupants using “findMo-
tifsGenome.pl” script in HOMER, and converted the results into a 0/1 matrix,
where each row is a peak and each column is a motif. The matrix value Dp,m

represents whether motif m was identified in peak p (0 means False, 1 means True).
We then input this peak by motif matrix and the normalized peak read count
matrix into Genomica (https://genomica.weizmann.ac.il/), and applied the “Mod-
uleMap” algorithm to calculate the degree of enrichment for every motif in every
sample, and thus constructed cell type-specific regulatory networks.

Disease-associated SNP enrichment analysis. To evaluate the enrichments of
the disease-associated variants in cell type-specific open chromatin and regulatory
regions, we used all relevant SNVs from GWAS experiments in the GRASP
database15,48 (GRASP 2.0.0.0: https://grasp.nhlbi.nih.gov/Updates.aspx), GWAS
database (GWAS catalog: https://www.ebi.ac.uk/gwas) and recently published SSc
associated GWAS study49. 9,026,521 genotype-phenotype results and 188,362
unique phenotypes were collected, with P value < 0.05. To analyze the enrichment
of each disease with each ATAC-seq sample, we first obtained the genomic posi-
tions of the disease-associated SNP sets from the GRASP database, filtered them at
different levels of P-value thresholds from 0.05, 10−3, 10−5, 10−6 to 10−8, and got
sets of disease-associated SNPs at different degrees of significance. Next, we used
the “-intersect” option in bedtools and overlapped these filtered SNP sets with all
ATAC-seq peaks, and obtained a disease by peak matrix. Diseases whose associated
SNPs were less than 20 were discarded to avoid statistical errors. Next, we calcu-
lated the “deviation score” (defined in Jason D. Buenrostro et al.50) for every
remaining disease for each sample, and then average “deviation score” is used to
quantify the enrichment of disease-associated SNP in each cell types.

Cell type-specific peak in SSc. For each cell type, pairwise comparison between
groups of samples classified into different clinical states were performed. Lists of
differential peaks were obtained and categorized into 6 groups: those enriched in
normal only, unaffected only, affected only, normal and unaffected, unaffected
and affected, and normal and affected samples. Significant peaks were defined as
|log2Fold change| between groups of samples >0.8, and ranges of peak intensities
within each group of samples <1.5.

Correlation analysis of cell-type signature score and gene expression. Sig-
nature genes for each cell type was obtained by anchoring cell-type specific peaks
(in both control and SSc) to their closest genes through “annotationPeaks.pl” in
HOMER. Modified Rodnan skin score (mRSS) and bulk cell gene expression
microarray data of lesion skin biopsies of the SSc patients in the treatment of
mycophenolate mofetil (MMF) were obtained from GEO database (GSE76886)26.
All of the 105 arm samples from 30 MMF-treated patients were included in the
correlation analysis (Supplementary Table 10). Microarray gene expression matrix
was filtered and normalized according to published methods26. To remove the
impact of MMF treatment, we first obtained the MMF response genes (list in
Supplementary Table 9) through the differential analysis between the skin samples
of 12/24 months treatment and baseline (|log2 Fold change | > 2, P value < 0.005).
Then, we removed MMF response genes from the signature genes of each cell type.
Cell type signature score was defined as the average normalized gene expression of
the signature genes (with MMF response genes removed) from the microarray data
obtained from SSc patients’ affected skin. Pearson correlation of the signature score
and mRSS for each cell type were shown. In Fig. 2e, for each patient during the
treatment, we identified the time points when the mRSS score is the lowest (time
point Low) and highest (time point High), and then calculated the corresponding
signature scores for each cell type from the microarray profiles at time point Low
and time point High, respectively. The time points Low and High can be different
for different patients. In this analysis, 13 patients whose highest mRSS - lowest
mRSS > 5 were included (patients’ ID 03, 04, 05, 06, 10, 16, 17, 21, 30, 33, 37,
42, 45).

TF Foot-printing analysis. TF foot-printing analysis was processed using the
published ATAC-seq pipeline ATAC-pipe11. Briefly, the HOMER “scanMotif-
GenomeWide.pl” script was used to identify the genome-wide motif occupancy
sites using the default settings. We normalized the ATAC-seq reads in each cate-
gory of samples (normal, affected and unaffected cells) by randomly selecting
500M reads from each group. The average coverage of each motif around a 100 bp
genomic region centered by the motif sites was calculated, consistent with pre-
viously reported methods51.

Analysis of resident skin cell communication through receptor-ligand inter-
actions. We first defined a connection between cell type A and B if the chromatin
around a receptor in cell type A and its ligand in cell type B were both accessible. If
their accessibilities were both significantly higher/lower in SSc compared to normal
controls, then this connection was considered as altered through the corresponding
pair of receptor/ligand. Known intercellular receptor/ligand partners were obtained
from the Ligand-Receptor Partners (DLRP) database40 and the CellPhoneDB41.
Each peak was imputed to its nearest gene by HOMER using the “annotationPeaks.
pl” script, and the expression levels of every gene were measured by summing the
intensities of all peaks that were imputed to this gene. To quantify the alteration of
the strength of receptor/ligand in the disease state compared to normal, we defined
an Alteration Score (AS) for each gene as the fold change of the predicted
expression in affected cells versus normal control. We next calculated the AS for all
pairs of receptors/ligands. We then defined the Strength of Interaction Alteration
(SIA) between cell types as follows Eq. (1):

SIA ¼ 0ðif ASreceptor

�
�
�

�
�
�< 1 or ASligand

�
�
�

�
�
�< 1Þ

ASreceptor þ ASligandðelseÞ

8

<

:
ð1Þ

The strength of alteration greater than 7 or less than -7 were retained for
downstream analysis. A positive strength of alteration indicates an up-regulated
interaction between the cells, and a negative strength of alteration suggests a down-
regulated interaction. The “circular” package (version 0.4.11) in R was used to draw
the circus plots.

Reporting Summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The raw data and pre-processed ATAC-seq data matrix of this study have been deposited
in Gene Expression Omnibus(GEO) with the primary accession code GSE99702. We also
used other published datasets in GEO including (1). ATAC-seq data collected from the
human skin fibroblast BJ cell line, the accession number is GSE81807 47; (2). Modified
Rodnan skin score (mRSS) and bulk skin cell gene expression data of lesion skin biopsies
of the SSc patients in treatment of mycophenolate mofetil (MMF), the accession number
is GSE76886 26; (3). Bulk skin cell gene expression data of normal and lesion skin, the
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accession numbers are GSE13095533, GSE5809534. Other data used in our paper: (1).
hg19 reference genome and annotation were downloaded from UCSC [http://
hgdownload.cse.ucsc.edu/goldenPath/hg19] and refseq [https://www.ncbi.nlm.nih.gov/
projects/genome/guide/human]; (2). All TF motifs were obtained from HOMER (Motif
Analysis tools) homepage [http://homer.ucsd.edu/homer/motif/]; (3). All interactions
were downloaded from Ligand-Receptor Partners(DLRP) database [https://www.
allacronyms.com/DLRP/Database_of_Ligand-Receptor_Partners] and the CellPhoneDB
[https://www.cellphonedb.org/explore-sc-rna-seq]; (4). All published disease associated-
SNPs were obtained from GRASP 2.0.0.0 [https://grasp.nhlbi.nih.gov/Updates.aspx] and
GWAS database [GWAS catalog:https://www.ebi.ac.uk/gwas]. Source data are provided
with this paper.

Code availability
Processed code is available in https://github.com/QuKunLab/SSc-ATAC-seq.
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