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Spatial transcriptomics approaches allow us to detect RNA tran-
scripts in space, and these approaches have been used to inves-
tigate the spatial distribution of gene expression in various 

tissues and organs, including the brain1, heart2, pancreas3, and skin4. 
On the one hand, the spatial transcriptomics approaches based on 
in situ hybridization and fluorescence microscopy (image-based)—
including seqFISH5, osmFISH6, and MERFISH7—detect the spatial 
distribution of transcripts with high resolution and accuracy, but 
they are limited in the total number of RNA transcripts that they 
can detect. On the other hand, spatial transcriptomics approaches 
based on next-generation sequencing (seq-based), such as ST8, 
10X Visium9, and Slide-seq10,11, can capture expressed RNAs at 
the whole-transcriptome scale from spots in space, but each spot 
(radius 10–100 µm) may contain multiple cells, which limits the 
spatial resolution of these approaches. The limitations of these spa-
tial transcriptomics approaches hinder their capacity to capture 
whole-transcriptome-scale data at single-cell resolution in space.

To break through the limitations of spatial transcriptomics 
approaches, bioinformaticians have proposed and developed vari-
ous integration methods to combine spatial transcriptomics and 
single-cell RNA-seq (scRNA-seq) data. For example, gimVI12 
employs a deep generative model to infer the likely spatial distribu-
tion of undetected transcripts; SpaGE13 uses the domain adaptation 
algorithm PRECISE14 and k-nearest-neighbor regression to predict 
the spatial distribution of undetected transcripts; Tangram15 uses 
non-convex optimization and a deep learning framework to learn 

a spatial alignment for scRNA-seq data; Seurat16 applies canonical 
correlation analysis17 to embed spatial and scRNA-seq data into a 
common latent space, and projects cells from scRNA-seq data to the 
spots of the spatial transcriptomics data; LIGER18 uses both integra-
tive non-negative matrix factorization19 and shared factor neighbor-
hood graphs to predict gene expression levels in space; novoSpaRc20 
and SpaOTsc21 each use optimal transport methods22 to construct 
spatial metrics of cells on the basis of scRNA-seq data; stPlus23 com-
bines the auto-encoder and weighted k-nearest-neighbor meth-
ods to predict spatial gene expression. These integration methods 
enable researchers to predict the spatial distribution of undetected 
transcripts.

In addition, Seurat, Tangram, novoSpaRc, and SpaOTsc have 
the capacity to assign cells from scRNA-seq data to spatial loca-
tions in histological sections; this is useful for improving the reso-
lution of the spatial transcriptomics data generated using spatial 
transcriptomics approaches, like ST or 10X Visium. Moreover, 
Cell2location24 uses the gene expression signature of the cell sub-
populations in scRNA-seq data to estimate the abundance of each 
cell type at each spot; RCTD25 applies cell type profiles learned 
from scRNA-seq data and supervised learning to decompose cell 
type mixtures; SpatialDWLS26 adopts the weighted-least-squares 
approach to infer cell type composition; Stereoscope27 leverages 
the model-based probabilistic method and scRNA-seq data to 
deconvolve the cell mixtures in spatial data; SPOTlight28 applies 
the seeded non-negative matrix factorization for the deconvolution 
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of spots; DSTG29 deconvolutes spatial transcriptomics data using 
graph-based convolutional networks; STRIDE30 uses the topic pro-
files trained from scRNA-seq data to decompose cell types from 
spatial mixtures; DestVI31 adopts the variational inference and 
latent variable models to delineate cell type proportions. These inte-
gration methods allow researchers to predict the cell type composi-
tion of spots in histological sections.

The emergence of these integration methods has undoubtedly 
deepened our understanding of spatial transcriptomics data and 
related biological and pathological processes. However, to the best 
of our knowledge, no independent study has comprehensively 
compared the performance of these integration methods for the 
prediction of the spatial distribution of transcripts or for the cell 
type deconvolution of spots in histological sections. Here, we used 
multiple metrics to systematically benchmark the performance of 
16 integration methods that can predict the spatial distribution 
of undetected transcripts, or the cell type composition of spots 
in histological sections (Fig. 1a), on the basis of processing of 45 
paired datasets containing both spatial transcriptomics data and 
scRNA-seq data and 32 simulated datasets (Fig. 1b). We assessed 
the accuracy of each integration method in predicting the spatial 
distribution of transcripts, including for sparse spatial transcrip-
tomics data that were down-sampled from the original datasets. 
We also evaluated the accuracy of the integration methods for the 
cell type deconvolution of spots in histological sections on the 
basis of the simulation of datasets wherein each spot could contain 
multiple cells of various types. Finally, we evaluated the computa-
tional resources consumed by each integration method. Our find-
ings can help researchers choose appropriate integration methods 
for their datasets, and they raise interesting questions about how 
various processing and dataset-specific attributes influence the 
integration performance of these tools for spatial transcriptomics 
research.

Results
Benchmarking framework and datasets examined. To evalu-
ate the performance of the 16 integration methods, we collected 
45 paired spatial transcriptomics and scRNA-seq datasets from 
published studies4–7,10,15,31–61 (Fig. 1 and Supplementary Table 1). 
The spatial transcriptomic datasets were produced by 13 spatial 
transcriptomics approaches, including FISH, osmFISH, seqFISH, 
MERFISH, STARmap, ISS, EXseq, BaristaSeq, ST, 10X Visium, 
Slide-seq, Seq-scope, and HDST, and the scRNA-seq datasets were 
obtained by Drop-seq62, Smart-seq63, and the 10X Chromium plat-
form64. We designed a pipeline to evaluate the performance of the 
integration methods for combining spatial and single-cell transcrip-
tomics datasets (Fig. 1a). During preprocessing of the scRNA-seq 
datasets, we removed cells with fewer than 200 RNAs. For the spa-
tial transcriptomic datasets, we generated a ‘ground truth’ using 2 
criteria: for samples with <1,000 detected RNAs, we used all of the 
RNAs; for samples with >1,000 detected RNAs, a set of 1,000 highly 
variable RNAs (assessed on the basis of the coefficient of variation 
of each RNA; Methods) was used.

In addition, we adopted the algorithms proposed by RCTD and 
Stereoscope and generated 32 simulated 10X Visium datasets from 
16 paired scRNA-seq datasets (Supplementary Tables 2 and 3). A 
simulated spot contains 5–15 cells randomly sampled from the 
scRNA-seq datasets (Methods), and the gene expression values of 
each spot represent the sum of all the cells in that spot.

After collecting the datasets, we first assessed the performance 
of eight integration methods, including Tangram, gimVI, SpaGE, 
Seurat, SpaOTsc, novoSpaRc, LIGER, and stPlus, in predicting the 
spatial distribution of RNA transcripts that remain undetected in 
spatial transcriptomics datasets. We used the 45 collected paired 
datasets to evaluate the accuracy of these integration methods for 
predicting the RNA spatial distribution. Then we down-sampled 

the spatial transcriptomics data to test the performance of the inte-
gration methods for datasets with sparse expression matrices.

Beyond the prediction of the spatial distribution of RNA tran-
scripts, Tangram, Seurat, SpaOTsc, and novoSpaRc can assign cells 
from scRNA-seq data to spatial locations in histological sections. 
Also, Cell2location, SpatialDWLS, RCTD, Stereoscope, DestVI, 
STRIDE, SPOTlight, and DSTG can be used to predict the cell 
type composition of spots in histological sections by combining 
spatial transcriptomics data and scRNA-seq data. All 12 of these 
integration methods are capable of deconvoluting cell types of the 
spots in the spatial transcriptomics datasets that were generated 
using the 10X Visium or ST platforms. To compare the perfor-
mance of these integration methods in cell type deconvolution, we 
used datasets 4 and 10 as the basis to simulate ‘grids’ representing 
low-spatial-resolution datasets, and we simulated 32 datasets from 
the scRNA-seq data as the ground truth (Methods). Briefly, in the 
simulated low-resolution datasets, each gridded ‘spot’ contains 1–18 
cells, similar to the spatial transcriptome datasets generated by the 
10X Visium or ST approaches. Finally, we assessed the computa-
tional resources consumed by each integration method.

Methods predicting spatial distribution of RNA transcripts. We 
used tenfold crossvalidation (Methods) on the 45 paired datasets 
to evaluate the accuracy of each integration method in predict-
ing the spatial distribution of RNA transcripts. We quantified the 
prediction performance of each integration method by calculating 
the Pearson correlation coefficient (PCC) between the expression 
vector of a gene in the ground truth of the spatial transcriptomics 
dataset and the expression vector for the same gene in the result pre-
dicted by each integration method (Methods). We first examined 
the prediction results of the spatial distribution for known marker 
genes. For example, Lein et al. reported that Igsf21 and Rprm are 
highly expressed in the L5/L6 layers of the cortex34. Compared with 
the ground truth for dataset 4 (seqFISH+; Smart-seq; mouse cor-
tex), Tangram performed the best in predicting the spatial distribu-
tion of Igsf21 (PCC = 0.79), and gimVI, SpaGE, and Seurat followed 
closely behind (PCC = 0.77, 0.71, and 0.70) (Fig. 2a). For the spatial 
distribution of Rprm, the results generated by SpaGE and Seurat had 
the highest PCC values (PCC = 0.79), followed by SpaOTsc, gimVI, 
Tangram, and LIGER (PCC = 0.78, 0.71, 0.66, 0.65) (Fig. 2b).

We also examined the predicted results of the spatial distribu-
tion of COL17A1 in dataset 42 (ST; 10X Chromium; human squa-
mous carcinoma). COL17A1 is a known marker gene for basal cells 
of squamous carcinoma4. Tangram, gimVI, novoSpaRc, and SpaGE 
successfully predicted that COL17A1 was highly expressed in the 
basal cells of squamous carcinoma; notably, the PCC values of these 
four integration methods were, respectively, 0.86 (Tangram), 0.84 
(gimVI), 0.76 (novoSpaRc), and 0.70 (SpaGE), higher than the best 
result of the other integration methods (Seurat, 0.48; SpaOTsc, 0.40; 
LIGER, 0.31; stPlus, 0.27) (Extended Data Fig. 1a).

To further quantify the prediction accuracy of each integra-
tion method, we adopted three metrics besides PCC: (1) structural 
similarity index (SSIM), which combines mean value, variance, and 
covariance to measure the similarity between the predicted result 
and the ground truth; (2) root mean square error (RMSE), the abso-
lute error between the predicted distribution and the ground truth; 
and (3) Jensen–Shannon divergence (JS), which uses relative infor-
mation entropy to gauge the difference between two distributions. 
For one gene, a higher PCC/SSIM or lower RMSE/JS value indicates 
better prediction accuracy. We also defined an accuracy score (AS) 
by aggregating the four metrics (Methods) to simplify the evalua-
tion of the accuracy of each integration method (a higher AS value 
indicates better performance).

Taking dataset 4 (seqFISH+; Smart-seq; mouse cortex) as an 
example of the image-based spatial transcriptomics approaches, 
Tangram, gimVI, and SpaGE clearly outperformed the other 
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integration methods. Specifically, we found that the average PCC/
SSIM of Tangram, gimVI, and SpaGE were 0.54/0.45, 0.52/0.43, and 
0.49/0.39, higher than the PCC/SSIM values for the other 5 methods, 

and the average RMSE/JS of these three methods were 0.94/0.18, 
0.97/0.19, and 0.99/0.21, lower than the average RMSE/JS for the 
others (Fig. 2c). Moreover, the average AS for the Tangram, gimVI, 
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Fig. 1 | Benchmarking workflow and summary characteristics of the examined paired datasets. a, Schematic overview of the benchmarking workflow used 
to compare the performance of the integration methods for paired spatial transcriptomics and scRNA-seq datasets. We used the 16 integration methods to 
combine the spatial and single-cell transcriptomics data, and then compared their performance for (1) predicting the spatial distribution of RNA transcripts 
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Nature Methods | www.nature.com/naturemethods

http://www.nature.com/naturemethods


Analysis NATuRE METHoDS

a

c d

e

0 0.1 0.2 0.3 0.4 0.5

Tangram

gimVI

SpaGE

Seurat

SpaOTsc

novoSpaRc

LIGER

stPlus

0 0.1 0.2 0.3 0.4

0 0.1 0.2 0.3

JS

0 0.4 0.8 1.2

RMSE

Tangram

gimVI

SpaGE

Seurat

SpaOTsc

novoSpaRc

LIGER

stPlus

SSIMPCC

Dataset 4
(seqFISH+; Smart-seq; mouse cortex)

Ground truth Tangram SeuratSpaGE

L2/3 and L4

PCC = 0.79 0.77 0.71 0.70 0.44 0.480.64

R
pr
m

Seurat SpaOTsc

PCC = 0.66 0.71 0.79 0.79 0.47 0.650.78

L5/L6

L5/L6

Dataset 4 (seqFISH+; Smart-seq; mouse cortex)

novoSpaRc LIGERSpaOTsc

Low

High

Low

High

L2/3 and L4

Ig
sf
21

Ground truth

stPlus

novoSpaRc LIGER stPlus

–0.14

–0.09

gimVI

Tangram SpaGEgimVIb

Dataset 4
(seqFISH+; Smart-seq; mouse cortex)

All datasets (n = 45)

Accuracy score

Accuracy score

0.2 0.4 0.6 0.8 1.0

Tangram

gimVI

SpaGE

Seurat

SpaOTsc

novoSpaRc

LIGER

stPlus

0.2 0.4 0.6 0.8 1.0

Tangram

gimVI

SpaGE

Seurat

SpaOTsc

novoSpaRc

LIGER

stPlus

Fig. 2 | Comparing the accuracy of eight integration methods capable of predicting the spatial distribution of RNA transcripts. a,b, The spatial 
distribution of Igsf21 (a) and Rprm (b) in dataset 4 (seqFISH+; Smart-seq; mouse cortex), including the ground truth and the predicted result from each of 
the integration methods. PCC, Pearson correlation coefficient between the expression vector of a transcript in the ground truth and that of the predicted 
result. c, The bar plots of PCC, SSIM, RMSE, and JS of each integration method in predicting the spatial distribution of transcripts in dataset 4. Data are 
presented as mean values ± 95% confidence intervals; n = 1,000 predicted genes. d, The violin plot of AS (which is aggregated from the PCC, SSIM, RMSE, 
and JS values; see Methods) of the 8 integration methods for transcripts in dataset 4. Center line, median; box limits, upper and lower quartiles; whiskers, 
1.5× interquartile range; n = 4 benchmark metrics. e, Boxplots of AS of the 8 integration methods for all 45 paired datasets. Center line, median; box limits, 
upper and lower quartiles; whiskers, 1.5× interquartile range; n = 45 independent datasets.

Nature Methods | www.nature.com/naturemethods

http://www.nature.com/naturemethods


AnalysisNATuRE METHoDS

and SpaGE predictions were 1.0, 0.875, and 0.75, higher than that 
of the other methods (Fig. 2d). We also calculated the PCC, SSIM, 
RMSE, JS, and AS values of the prediction results for all transcripts 
in dataset 42 (as an example of the seq-based spatial transcriptomics 
approaches), and found that Tangram and gimVI outperformed the 
other integration methods on the basis of these metrics (Extended 
Data Fig. 1b,c).

To systematically assess the accuracy of the eight integration 
methods' predictions of the spatial distribution of undetected tran-
scripts, we determined the PCC, SSIM, RMSE, JS, and AS values of 
their prediction results for all 45 paired datasets (Fig. 2e, Extended 
Data Fig. 2). The average ASs for the Tangram, gimVI, and SpaGE 
predictions were 0.96, 0.84, and 0.69, respectively, all of which 
exceed the AS values for Seurat (0.50), SpaOTsc (0.55), LIGER 
(0.25), novoSpaRc (0.47), and stPlus (0.31). Note that Tangram was 
still the best-performing integration method when we separately 
assessed the image-based datasets, the seq-based datasets, and the 32 
simulated datasets, followed by gimVI and SpaGE (Extended Data 
Fig. 3a–c). Because 10X Visium, seqFISH, MERFISH, and Slide-seq 
have released more than 3 datasets, we further compared the ASs of 
the eight integration methods when processing data obtained using 
these four spatial transcriptomics technologies (Extended Data  
Fig. 3d–g). We found that Tangram, gimVI, and SpaGE outper-
formed other integration methods for data generated from 10X 
Visium, seqFISH, and MERFISH platforms, and Tangram and 
gimVI are top-ranked methods in processing Slide-seq datasets.

Several integration methods (for example, Seurat, LIGER, 
SpaGE, and stPlus) normalized the spatial transcriptomics data by 
default prior to integration. Here, we tested four schemes of input 
expression matrices: (1) raw expression matrix of spatial data and 
raw expression matrix of scRNA-seq data (R-R); (2) normalized 
expression matrix of spatial data and raw expression matrix of 
scRNA-seq data (N-R); (3) raw expression matrix of spatial data 
and normalized expression matrix of scRNA-seq data (R-N); and 
(4) normalized expression matrix of spatial data and normalized 
expression matrix of scRNA-seq data (N-N).

Interestingly, for 28 paired seq-based datasets, the transcript 
spatial distributions generated by Tangram, gimVI, SpaGE, Seurat, 
SpaOTsc, and LIGER have significantly higher PCC values when 
using an R-R and R-N input scheme than when using an N-R or 
N-N input scheme, and this trend was observed for 16 of the 28 
paired datasets (P values < 0.01, paired t-test) (Extended Data Figs. 
4 and 5a); for SpaGE, Seurat, SpaOTsc, and novoSpaRc, the PCC 
values of the results with the R-R input scheme were higher than 
those with the other input schemes in 19 of the 28 paired datasets  
(P values < 0.01), and stPlus generated results with higher PCC val-
ues when using the R-R input scheme than the N-N input scheme 
in 18 of the 28 paired datasets (P value < 0.05). For 15 paired 
image-based datasets (Extended Data Figs. 4 and 5b), the transcript 
spatial distributions generated by Tangram, gimVI, SpaGE, and 
Seurat have higher PCC values when using the R-R or R-N input 
scheme than when using the N-R or N-N input scheme (11 out of 
15 datasets, P value < 0.05); SpaGE, Seurat, and LIGER have higher 
PCC values when using the R-R input scheme than when using the 
other input schemes (11 out of 15 datasets, P value < 0.05); SpaOTsc 
has a higher PCC value when using the R-R input schemes than 
when using the NN input scheme (12 out of 15 datasets, P value < 
0.05). Nevertheless, it should be emphasized that regardless of what 
input scheme was used, Tangram invariably outperformed the other 
integration methods (Extended Data Fig. 5c–f).

Impact of matrix sparsity. Notably, for datasets 12, 13, 40, and 44, 
all eight integration methods had low accuracy in predicting the 
spatial distribution of transcripts (that is, average PCC/SSIM < 0.3, 
Extended Data Fig. 2). We investigated this apparently poor perfor-
mance of the integration methods for these datasets by calculating 

correlation coefficients between the four metrics (PCC, SSIM, 
RMSE, and JS) and considered several features of the spatial tran-
scriptomics datasets, including the sparsity of the expression matrix 
(the sparsity of the spatial transcriptomics and scRNA-seq data is 
defined as the percentage of zero elements in the expression matrix), 
the number of detected genes, the number of detected spots, and the 
number of genes per spot. Ultimately, we found that the JS values 
of the 8 methods all linearly increased along with the rising of the 
sparsity of expression matrices (P values < 1 × 10−6, coefficient of 
determination (R2) ≥ 0.50) (Extended Data Fig. 6).

To further characterize the impact of matrix sparsity, we next 
evaluated the performance of each integration method when input-
ting a very sparse spatial expression matrix (down-sampled from 
high quality datasets where sparsity was lower than 0.7). Specifically, 
we examined spatial transcriptomics datasets that captured >1,000 
genes from >100 spots as high quality. To simulate expression 
matrices with ‘high sparsity,’ we adopted Splatter65 and Scuttle66 to 
down-sample the non-zero elements from the original expression 
matrices to varying extents (Methods). We then used the original 
and down-sampled expression matrices as the inputs for the eight 
integration methods.

First, we evaluated the impact of the expression matrix spar-
sity in predicting the spatial distribution of known marker genes 
(Methods). Drew et al. reported that Cplx1 is highly expressed 
in layer L5 of the cortex67. Examining Cplx1 in both the original 
and down-sampled data (down-sampling rate = 0.8) of dataset 4, 
we observed that the spatial distributions of Cplx1 predicted by 
Tangram, gimVI, and SpaGE each had PCC values >0.7 for both 
the original and down-sampled data (Extended Data Fig. 7a).

We then assessed the performance of each integration method 
by counting the proportion of transcripts in a dataset exceeding 
a PCC threshold of 0.5 for both the original and down-sampled 
data, which we deemed the ‘robustness score’ (RS). For dataset 4, 
Tangram had the highest RS value (0.60), followed by gimVI (0.55) 
and then SpaGE (0.51) (Fig. 3a). Moreover, we noted that (1) the RS 
values decreased as the down-sampling rate increased and (2) the 
RS values for Tangram, gimVI, and SpaGE were consistently higher 
than those for Seurat, SpaOTsc, LIGER, novoSpaRc, and stPlus 
(Fig. 3b). A combined analysis which included the down-sampled 
data from 19 datasets again highlighted the strong performance of 
Tangram, gimVI, and SpaGE: even when the down-sampling rate 
reached 0.8, the average RS values of these three methods remained 
>0.50 (Fig. 3c, down-sampled by Splatter; Extended Data Fig. 7b,c, 
down-sampled by Scuttle). In summary, Tangram, gimVI, and 
SpaGE outperformed other integration methods in predicting the 
spatial distribution of transcripts for highly sparse datasets.

Performance of methods in cell type deconvolution. A common 
issue encountered when using spatial transcriptomics approaches 
like 10X Visium and ST is that each spot from a histological sec-
tion may contain multiple cells, so it can be impossible to correctly 
assign the cell type composition of each spot. As noted above, 
Seurat, SpaOTsc, Tangram, and novoSpaRc are capable of assigning 
each cell from a scRNA-seq analysis to a spot from a spatial tran-
scriptomics analysis, implying that they can be used to deconvolute 
the cell types of each spot. Moreover, Cell2location, SpatialDWLS, 
RCTD, Stereoscope, DestVI, STRIDE, SPOTlight, and DSTG were 
also designed for this purpose.

To compare the performance of the 12 integration methods 
in predicting the cell type composition of spots, we simulated this 
‘multi-cell spot problem’ experienced with ST and 10X Visium data-
sets by ‘gridding’ a dataset that did not have this problem (dataset 
10, acquired using STARmap; Smart-seq; mouse visual cortex). The 
cell type composition of each spot in dataset 10 has been reported 
and can be used as the ground truth when simulating a dataset with 
potentially ambiguous cell type assignations in each spot (Fig. 4a and 
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Methods). The original dataset 10 captured 1,549 cells, correspond-
ing to 15 cell types. After gridding, the simulated data had 189 spots, 
with each spot containing 1–18 cells. We plotted the locations of L4 
excitatory neurons and found that RCTD and Stereoscope performed 
better in terms of the PCC values (0.87), followed by Tangram (0.85), 
Cell2loacation (0.83), STRIDE (0.80), SPOTlight (0.79), Seurat (0.76), 
SpaOTsc (0.74), and DSTG (0.71) (Fig. 4b). We then employed PCC, 
SSIM, RMSE, JS, and AS metrics to quantify the accuracy of the 12 
integration methods in predicting the cell type composition of spots 
in gridded dataset 10 (Fig. 4c and Extended Data Fig. 8a). RCTD had 
the highest AS score (0.94), followed by Stereoscope (0.92).

We also performed the same analysis on dataset 4 (seqFISH+; 
Smart-seq; mouse cortex), which contains 524 cells of 14 cell types. 
After ‘gridding’, the simulated dataset had 72 spots (Extended 
Data Fig. 8b). Using the ground truth of the locations for the 
L5/6 excitatory neurons, we found that SpatialDWLS, RCTD, 
Tangram, Cell2location, and Stereoscope had PCC values of 0.88, 
0.86, 0.85, 0.83, and 0.81 for the assignations of the L5/6 excitatory 
neurons, higher than other integration methods (Extended Data  
Fig. 8c). Moreover, in the prediction results for all cell types of data-
set 4, SpatialDWLS, Tangram, and RCTD had the top 1, 2, and 3 
ranking AS values (1.0, 0.92, and 0.83 respectively), followed by 
Cell2location (0.67) and Stereoscope (0.65) (Fig. 4d).

We further quantified the performance of these integration meth-
ods in cell type deconvolution of spots in the 32 simulated datasets 
that were synthesized from scRNA-seq datasets (Supplementary 
Table 2 and 3 and Methods). As the cell type information of each cell 

in these scRNA-seq datasets has been reported by the data source 
papers, the cell type composition of a simulated spot can be inferred 
from the cells it contains. Note that novoSpaRc and SpaOTsc require 
spatial location information for each spot and thereby were excluded 
because spatial location information was not available in the simu-
lated datasets. We used the 32 simulated datasets as the ground truth 
to assess the performance of the remaining 10 integration methods 
(including Seurat, Tangram, Cell2location, SpatialDWLS, RCTD, 
Stereoscope, DestVI, STRIDE, SPOTlight, and DSTG) in deconvo-
luting cell types in spots. We found that the average PCC and SSIM 
values of Cell2location, SpatialDWLS, and STRIDE are 0.83/0.75, 
0.78/0.71, and 0.83/0.69, higher than those of the other integration 
methods, and the average RMSE and JS values of the Cell2location, 
SpatialDWLS, RCTD, and STRIDE are 0.08/0.33, 0.10/0.32, 
0.096/0.37, and 0.11/0.37, lower than those of the other integration 
methods (Extended Data Fig. 8e). We also used the aggregation of the  
four metrics (that is, the AS score) to rank the performance of these 
integration methods in predicting cell type composition of spots, 
and we found that Cell2location, SpatialDWLS, RCTD, and STRIDE 
outperformed the other integration methods (Fig. 4e).

Computational resources. We used all the 45 paired datasets to 
compare the computational resources consumed by the 8 integra-
tion methods that can predict the spatial distribution of undetected 
transcripts (Supplementary Table 4). We used an identical CPU 
platform (2.2 GHz, 45 MB L3 cache, 144 CPU cores) to test each 
method. We are aware that gimVI and Tangram can support GPU 
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processing; however, these two integration methods reported mem-
ory errors on our GPU platform (NVIDIA Tesla K80 with 12 GB 
memory) when processing the largest dataset 40 (19,522 spots in 
the spatial transcriptomics data and 26,252 cells in the scRNA-seq 
data). Notably, it took Seurat and LIGER less than 10 minutes of 
CPU time to process each dataset, and Tangram and LIGER con-
sumed less than 32 GB of memory.

We then assessed the impacts of various data attributes (including 
the number of cells in scRNA-seq data, the number of spots in spatial 

data, and the number of genes used for training) on the computa-
tional resources consumed by those eight integration methods. By 
down-sampling the number of cells and the number of spots in data-
set 40 and the number of training genes in dataset 6, we found that 
Seurat was invariably the most computationally efficient method 
among the 8 integration methods for the prediction of the spatial 
distribution of undetected transcripts (Extended Data Fig. 9a–c).

To compare the computational resources consumed by the 10 
integration methods that can deconvolute the cell types of spots, 
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we used a large simulated dataset (Methods) that contains 10,000 
cells, 20,000 spots, and 56 cell types. For this dataset, Cell2locations 
reported memory errors on our GPU platform. Seurat and Tangram 
took less than 30 minutes of CPU time, and Stereoscope, Tangram, 
and DestVI consumed less than 8 GB of memory (Extended Data 
Fig. 9d). We then evaluated the impacts of the number of cells in 
scRNA-seq data, the number of spots in spatial data, and the num-
ber of cell types on computing time consumed by those 10 integra-
tion methods, and found that Tangram and Seurat are the top two 
most-efficient methods for processing cell type deconvolution of 
spots (Extended Data Fig. 9e–g).

Discussion
In this study, we benchmarked the performance of 16 integration 
methods capable of combining spatial transcriptomics data and 
single-cell transcriptomics data. We found that Tangram, gimVI, 
and SpaGE outperformed other integration methods for predict-
ing the spatial distribution of transcripts, whereas Cell2location, 
SpatialDWLS, and RCTD were superior to other integration meth-
ods for cell type deconvolution of spots in histological sections. Our 
study helps researchers to choose appropriate tools and to opti-
mize data-analysis workflows to accurately and efficiently integrate 
spatial transcriptomics data with scRNA-seq data. We have also 
provided a benchmark pipeline (https://github.com/QuKunLab/
SpatialBenchmarking) and an instructive table (Supplementary 
Table 5) summarizing the properties and performance of all the 
benchmarked methods to guide researchers select suitable tools that 
match their data combinations.

Methods constructed on the basis of probabilistic models 
combined with negative binomial or Poisson distributions, such 
as gimVI, Cell2location, and RCTD, generally perform better at 
predicting the spatial distribution of transcripts or deconvolving 
cell types of spots. A deep learning algorithm was also applied in 
several integration methods, among which Tangram is one of the 
best-performing methods in predicting spatial distribution of the 
undetected transcripts. Technically, Tangram employs non-convex 
optimization in the model and selects only the optimal subset of 
scRNA-seq observations in the loss function. A combination of 
these measures may help improve the predictive power of the tools.

One observation from our comparative analysis is that the sparsity 
of the spatial transcriptomics expression matrix seriously affects the 
performance of the eight integration methods that predict the spa-
tial distribution of RNA transcripts. There are multiple tactics that 
can be used to combat this sparsity issue for spatial transcriptomics 
expression matrices: researchers can increase the depth of sequenc-
ing, screen spots and genes with strict cut-off values to reduce the 
sparsity of the filtered expression matrix, or consider applying impu-
tation algorithms (for example, SAVER68, MAGIC69, and WEDGE70) 
to impute the zero elements in the expression matrix.

Another potential application of spatial transcriptomics is to pre-
dict ligand–receptor interactions between two cell types that are spa-
tially close to each other. Many analytical tools have been developed 
for this task, such as SpaOTsc21, Giotto71, CellChat72, NicheNet73, 
ICELLNET74, and SingleCellSignalR75. However, the vast discrepan-
cies in the results from different methods make informative com-
parison difficult. For instance, only a small proportion (<5%) of the 
predicted ligand–receptor interactions were shared in the results for 
>3 methods (https://github.com/QuKunLab/SpatialBenchmarking/
tree/main/FigureData). Benchmarking analysis may thereby rely on 
more experimental validation of cell–cell interactions in the future.

The wide diversity and fast-moving state of scRNA-seq tech-
nologies (Drop-seq, Smart-seq, and 10X Chromium) and spatial 
sequencing technologies (FISH, osmFISH, seqFISH, MERFISH, 
STARmap, ISS, EXseq, BaristaSeq, ST, 10X Visium, Slide-seq, 
Seq-scope, and HDST) complicates the task of this benchmarking 
analysis. We adopted three distinct perspectives to overcome the 

challenges caused by the diversity of sequencing technologies: (1) 
we divided the spatial transcriptome datasets into two categories 
(seq-based technologies and image-based technologies); (2) we 
added an independent comparison of the integration methods for 
the set of four spatial transcriptomics technologies (MERFISH, seq-
FISH, Slide-seq, and 10X Visium) that have to date released more 
than three datasets; and (3) we used several intrinsic parameters 
(for example, the number of captured genes, the number of captured 
spots, and the sparsity of the expression matrix) to characterize the 
datasets generated by different spatial transcriptomics technologies. 
There are still aspects (that is, different numbers of genes and dif-
ferent spatial organization) that may affect the performance of the 
integration methods and the user’s expectations. Nevertheless, on 
the basis of the current collection of datasets, we found that the per-
formance rankings of these integration methods are barely affected 
by the spatial transcriptome technologies that generated these data.

Advances in spatial transcriptomics technologies, such as new 
versions of 10X Visium and BGI Stereo-seq76, may enable detec-
tion of transcriptomic information for spots with diameters much 
smaller than cell size. However, in the near future, each spot still 
might not correspond exactly to a single cell when using these 
technologies. Moreover, considering that there is a large amount 
of publicly available spatial transcriptomics datasets that are highly 
valuable to different research communities, and the intense research 
efforts using spatial transcriptomics technologies that are now 
underway, we contend that there will be strong interest in integrat-
ing spatial transcriptomics and scRNA-seq data to determine the 
spatial distribution of cells or undetected transcripts.

In summary, this study presents a much-needed independent 
comparison of available integration methods of spatial transcrip-
tomics and scRNA-seq data to determine the cell type deconvolu-
tion or the spatial distribution of undetected genes. Our results are 
also a useful resource for biologists who want to analyze their spatial 
transcriptomics data or methods developers who want to improve 
state-of-the-art technology.
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Methods
Preprocessing of datasets. We preprocessed each dataset with the following 
steps. (1) Removal of low-quality cells. For scRNA-seq data, we used Seurat 
with parameters ‘min.features = 200’ to remove cells for which fewer than 200 
RNAs were captured. (2) Normalization of the expression matrix. For spatial 
transcriptomics datasets, we tested both the non-normalized and normalized 
expression matrices for input of each integration method. To normalize the 
expression matrices, we used the following equation:

Dij = log




N̄ ×

Cij
M∑

j=1
Cij

+ 1




 (1)

where Cij represents the raw read count for gene i in spot j, Dij represents the 
normalized read count for gene i in spot j, and N̄  is the median number of detected 
transcripts per cell. For scRNA-seq datasets, we normalized their expression 
matrix using the function ‘NormalizeData’ and default parameters in Seurat 3.2. 
(3) Selection of highly variable genes. For spatial transcriptomic datasets with more 
than 1,000 detected genes, we calculated the coefficient of variation of each gene 
using the following equation:

CVi =
σ i
ui (2)

where CVi is the coefficient of variation of gene i; σi is the s.d. of the spatial 
distribution of gene i in all spots; and ui is the average expression of gene i in all 
spots. We identified 1,000 genes with the highest CVi values as highly variable genes 
and used their overlap with detected genes in the corresponding scRNA-seq data 
to construct the ground truth for each dataset. For spatial transcriptomic datasets 
with fewer than 1,000 detected genes, we used genes detected in both spatial 
transcriptomics and scRNA-seq data to build the ground truth of each dataset.

Parameter settings for integration methods. We evaluated the performance of 
eight integration methods, which can predict the spatial distribution of undetected 
transcripts, using tenfold crossvalidation. For a set of genes in the spatial data, we 
divided the genes into 10 portions, and iteratively used nine portions of the genes 
for integration (that is, the reference gene set used for training); the remaining 
one portion of genes was used for prediction. The parameters of each integration 
method were set as described below for each program.

gimVI. We followed the instructions on the gimVI website: https://docs.scvi-tools.
org/en/0.8.0/user_guide/notebooks/gimvi_tutorial.html. The spatial distribution of 
genes was obtained using the model.get_imputed_values function with parameter 
normalized = False.

SpaGE. We followed the guidelines on the GitHub repository of SpaGE: https://
github.com/tabdelaal/SpaGE/blob/master/SpaGE_Tutorial.ipynb. If the number 
of genes used for integration was greater than 50 (that is, Ngene > 50), we set the 
parameter n_pv = Ngene / 2.

Tangram. We followed the instructions on the Tangram GitHub repository: https://
github.com/broadinstitute/Tangram. we set the parameters as modes = ‘clusters’, 
density = ‘rna_count_based’.

Seurat. We followed the instructions on the Seurat 3.2 website: https://satijalab.org/
seurat/archive/v3.2/integration.html. We set the parameter reduction = ‘cca’, k.filter 
= NA. If Ngene > 30, we set dims = 30, otherwise we set dims = Ngene. The predicted 
spatial distribution of genes was obtained using the Seurat function ‘TransferData’.

SpaOTsc. We followed the instructions on the SpaOTsc GitHub repository: https://
github.com/zcang/SpaOTsc. The spatial distribution of genes was obtained using 
the function ‘issc.transport_plan’ with parameters alpha = 0, rho = 1.0, epsilon = 
0.1, scaling = False.

novoSpaRc. We followed the guidelines on the GitHub repository of novoSpaRc: 
https://github.com/rajewsky-lab/novosparc/blob/master/reconstruct_drosophila_
embryo_tutorial.ipynb. We set the parameters as alpha_linea r = 0.5, loss_fun = 
‘square_loss’, epsilon = 5 × 10–3. We trained novoSpaRc using the expression and 
spatial information of the training gene set, just as we did for the other methods, to 
ensure the fairness of the benchmarking study.

LIGER. We followed the instructions on the LIGER GitHub repository: https://
github.com/welch-lab/liger. The predicted spatial distribution of genes was 
obtained using the function ‘imputeKNN’ with parameters norm = FALSE, scale = 
FALSE. If Ngene > 30, we set knn_k = 30, otherwise we set knn_k = Ngene.

stPlus. We followed the instructions on the LIGER GitHub repository: http://
github.com/xy-chen16/stPlus. we set tmin = 5, neighbor = 50.

We then evaluated the performance of 12 integration methods that can 
deconvolute the cell types of histological spots. The parameters of each integration 
method were set as described below for each program.

Cell2location. We followed the guidelines on the Cell2location website: https://
cell2location.readthedocs.io/en/latest/notebooks/cell2location_tutorial.html. The 
single-cell regression model was trained with parameters max_epochs = 250,  
lr = 0.002. The cell2location model was obtained with parameters max_epochs = 
30,000.

RCTD. We followed the guidelines on the RCTD GitHub repository: https://raw.
githack.com/dmcable/spacexr/master/vignettes/spatial-transcriptomics.html. We 
set doublet_mode = ‘full’.

DestVI. We followed the guidelines on the DestVI website: https://docs.scvi-tools.
org/en/stable/tutorials/notebooks/DestVI_tutorial.html. The single-cell model was 
trained with parameters max_epochs = 250, lr = 0.001, number of training genes = 
7,000. The spatial model was trained with parameters max_epochs = 2,500.

Tangram. We followed the instructions on the Tangram GitHub repository: https://
github.com/broadinstitute/Tangram. We set the parameters as modes = ‘clusters’, 
density = ‘rna_count_based’. To deconvolute the cell types in space, we invoke 
‘project_cell_annotation’ to transfer the annotation to space.

Seurat. We followed the instructions on the Seurat 3.2 website: https://satijalab.
org/seurat/archive/v3.2/integration.html. We set the parameter dim = 1:30, 
normalization.method = ‘SCT’.

SpatialDWLS. We followed the guidelines on the SpatialDWLS website: https://
rubd.github.io/Giotto_site/articles/tut7_giotto_enrichment.html. We set the 
parameter as n_cell = 20.

SPOTlight. We followed the guidelines on the SPOTlight GitHub repository: 
https://marcelosua.github.io/SPOTlight/. We set the parameter as transf = ‘uv’, 
method = ‘nsNMF’.

Stereoscope. We followed the guidelines on the website: https://docs.scvi-tools.
org/en/stable/user_guide/models/stereoscope.html. The single-cell model was 
trained with parameters max_epochs = 100. The spatial model was trained with 
parameters max_epochs = 10,000.

STRIDE. We followed the guidelines on the STRIDE website: https://stridespatial.
readthedocs.io/en/latest/tutorials/Mouse_embryo.html. We set the parameter as 
‘-normalize’.

DSTG. We followed the instructions on the DSTG GitHub repository: https://
github.com/Su-informatics-lab/DSTG.

SpaOTsc. We followed the instructions on the SpaOTsc GitHub repository: https://
github.com/zcang/SpaOTsc. The spatial distribution of genes was obtained using 
the function ‘issc.transport_plan’ with parameters alpha=0, rho=1.0, epsilon=0.1, 
scaling=False.

novoSpaRc. We followed the guidelines on the GitHub repository of novoSpaRc: 
https://github.com/rajewsky-lab/novosparc/blob/master/reconstruct_drosophila_
embryo_tutorial.ipynb. We set the parameters as alpha_linear = 0.5, loss_fun = 
‘square_loss’, epsilon = 5 × 10–3. We trained novoSpaRc using the expression and 
spatial information of the training gene set, just as we did for the other methods, to 
ensure the fairness of the benchmarking study.

Benchmark metrics. We constructed a common pipeline to evaluate the 
performance of the integration methods for the 45 paired datasets. In the pipeline, 
we used the following five metrics to assess each integration method.

	1.	 PCC. The PCC value was calculated using the following equation:

PCC =
E[(̃xi−ũi)(xi−ui)]

σ̃ iσ i
(3)

where xi and x̃i are the spatial expression vectors of gene i in the ground truth and 
the predicted result, respectively; ui and ũi are the average expression value of gene 
i in the ground truth and the predicted result, respectively; and σi and σ̃i are the 
s.d. of the spatial expression of gene i in the ground truth and the predicted result, 
respectively. For one gene, a higher PCC value indicates better prediction accuracy.
	2.	 SSIM77. We first scaled the expression matrix as follows, so that the expres-

sion value of each gene was between 0 and 1:

x′ij =
xij

max({xi1 ,…,xiM}) (4)

where xij denotes the expression of gene i in spot j, and M is the total number of 
spots. Then we used the scaled gene expression and the following equation to 
calculate the SSIM value of each gene:

SSIM =
(2ũiui+C2

1)(2cov(x
′

i ,̃x
′

i )+C2
2)

(ũ2i +u2i +C2
1)(σ̃2

i +σ2
i +C2

2)
(5)
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where the definitions of ui, ũi, σi, and σ̃i are similar to those for calculating the PCC 
value (but for scaled gene expression); C1 and C2 are 0.01 and 0.03, respectively; and 
cov(xi , x̃i) is the covariance between the expression vector of gene i in the ground 
truth (that is, x′i) and that of the predicted result (that is, x̃′i). For one gene, a higher 
SSIM value indicates better prediction accuracy.
	3.	 RMSE. We first calculated the z-score of the spatial expression of each gene 

for all spots, then used the following equation to calculate RMSE:

RMSE =

√

1
M

M∑

j=1

(
z̃ij − zij

)2 (6)

where zij and z̃ij are the z-score of the spatial expression of gene i in spot j in the 
ground truth and the predicted result, respectively. For one gene, a lower RMSE 
value indicates better prediction accuracy.
	4.	 JS. JS uses relative information entropy (that is, Kullback–Leibler divergence) 

to determine the difference between two distributions. We first calculated the 
spatial distribution probability of each gene as follows:

Pij = xij
∑M

j=1 xij (7)

where xij denotes the expression of gene i in spot j, M is the total number of spots, 
and Pij is the distribution probability of gene i in spot j. We then calculated the JS 
value of each gene using the following equations78:

JS =
1
2KL

(

P̃i

∣
∣
∣
P̃i+Pi

2

)

+
1
2KL

(

Pi

∣
∣
∣
P̃i+Pi

2

)

(8)

KL (ai||bi) =

M∑

j=0

(

aij × log aij
bij

)

(9)

where Pi and P̃i are the spatial distribution probability vectors of gene i 
in the ground truth and the predicted result, respectively, KL(ai||bi) is the 
Kullback-Leibler divergence between two probability distribution ai and bi, and 
aij and bij are the predicted probability and real probability of gene i in spot j, 
respectively. For one gene, a lower JS value indicates better prediction accuracy.
	5.	 AS. We defined AS by aggregating PCC, SSIM, RMSE, and JS to evaluate the 

relative accuracy of the integration methods for each dataset. For one dataset, 
we calculated the average PCC, SSIM, RMSE, and JS of all genes predicted 
by each integration method. Then we sorted the PCC and SSIM values of the 
integration methods in ascending order to get RANKPCC and RANK SSIM; the 
method with the highest PCC/SSIM value will have RANKPCC/SSIM = N, and 
the method with the lowest PCC/SSIM value will have RANKPCC/SSIM = 1. 
We also sorted the RMSE and JS values of the integration methods in de-
scending order to get RANKRMSE and RANKJS; the method with the highest 
RMSE/JS value will have RANKRMSE/JS = 1, and the method with the lowest 
RMSE/JS value will have RANKRMSE/JS = N. Finally, we calculated the aver-
age value of RANKPCC, RANKSSIM, RANKRMSE, and RANKJS to obtain the 
AS value of each integration method, as follows:

AS =
1
4 (RANKPCC + RANKSSIM + RANKRMSE + RANKJS) (10)

For a dataset, the method with the highest AS value had the best performance 
among the integration methods.

Simulating ‘multi-cell-spot problem’ datasets. In order to obtain 
multi-cell-per-spot datasets with known cell compositions at each spot, we 
gridded single-cell resolution spatial transcriptomics datasets 4 and 10 to simulate 
datasets with potentially ambiguous cell type assignments per spot. For dataset 
4 (seqFISH+; Smart-seq; mouse cortex), we defined a square with 500×500 
pixels (~51.5 μm) as one spot-like region to grid the seqFISH+ slide, referring 
to the coarse-graining procedure introduced by SpatialDWLS. We summed the 
expression values of all cells in a grid to simulate a spot that may contain multiple 
cells, and took the center of the grid as the location of the spot. The simulated 
data of dataset 4 had 72 spots, and we calculated the percentage of cell types in 
each spot as the ground truth. For dataset 10 (STARmap; Smart-seq; mouse visual 
cortex), we used Seurat to cluster cells, and annotated the cell type of each cluster 
using marker genes79,80. We used marker genes Slc17a7 and Gad1 to annotate 
excitatory neurons and inhibitory neurons, respectively. The L2/3, L4, L5 and L6 
excitatory neurons (eL2/3, eL4, eL5, eL6) were annotated, respectively, by marker 
genes Nov, Rorb, Sulf2, and Pcp4. Moreover, the VIP, SST, and PV inhibitor neurons 
were annotated, respectively, by marker genes Vip, Sst, and Pvalb. The microglia, 
astrocytes, oligodendrocytes, smooth-muscle, and endothelial cells were annotated 
by marker genes Pdgfra, Aqp4, Enpp2, Mgp, and Bsg, respectively. We then used a 
750-pixel window to grid the STARmap slide. We summed the expression values 
of all cells in a grid to simulate a spot that may contain multiple cells, and took the 
center of the grid as the location of the spot. The simulated data of dataset 10 have 
189 spots in total, and we calculated the percentage of cell types in each spot as the 
ground truth.

We also used PCC, SSIM, RMSE, and JS to assess the accuracy of Seurat, 
SpaOTsc, Tangram, and novoSpaRc in assigning cells to spatial locations in 
histological sections. We first counted the proportions of various types of cells in 
each spot. Then we introduced the cell type proportion of each spot into  
Eq. 3–Eq. 9 to calculate PCC, SSIM, RMSE, and JS values, which quantified the 
similarity (PCC/SSIM) or difference (RMSE/JS) between the predicted results and 
the ground truth. Finally, we used the two-sided Mann–Whitney U test to calculate 
the statistical significance of the difference in the prediction accuracy between 
different methods.

Simulating spatial datasets using scRNA-seq datasets. For the 32 simulated 
datasets, we devised the generation procedure of spatial transcriptomics data 
simulation by referring to the algorithm introduced by RCTD and Stereoscope. For 
each simulated spot, we first sampled cell numbers (Nc) in a uniform distribution 
in the range 5–15, and sampled the number of cell types (Nt) in a uniform 
distribution in the range 2–6. Then we assumed that these cell types have equal 
distribution possibility P=1/Nt in the spot, and randomly assigned cells from each 
cell types of the scRNA-seq data to the spot. To obtain the gene expression values 
at each spatial location, we summed the gene expression values of all cells in one 
spot. Referring to the method for constructing simulated datasets used in RCTD, 
we used Scuttle (http://bioconductor.org/packages/release/bioc/html/scuttle.html) 
to down-sample the number of counts per spot to 10% of the original value. We 
can obtain the percentage of a cell type at each spot by counting the number of cells 
corresponding to the cell type. For the large simulated dataset used for assessing 
the efficiency of each integration method, we used the same algorithm as above, 
but set the number of spots to 20000, the number of cells to 10000, and the number 
of cell types to 56.

Simulating datasets with high sparsity. We used 19 of the 45 paired datasets (that 
is, datasets 4, 7, 18, 19, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 36, 37, 38, 42) to test 
the impact of the sparsity of expression matrices for each integration method. To 
simulate a dataset with high sparsity, we applied the Scuttle package (http://www.
bioconductor.org/packages/release/bioc/html/scuttle.html) for the down-sampling 
of the spatial expression matrices of the datasets, and we also used the Splatter 
package to down-sample the datasets (down-sample rate = 0.2, 0.4, 0.6, and 0.8). 
We down-sampled each dataset 10 times at different rates to avoid errors caused 
by random selection. To quantify the impact of expression matrix sparsity for each 
integration method, we counted the percentage of genes whose PCC values of the 
spatial distribution predicted from the original data and the down-sampled data 
were both greater than 0.5, which was defined as the robustness score.

Computer platform. We ran CPU tests of the 16 integration methods on a 
computer cluster with four Intel Xeon E78860v4 CPUs (2.2 GHz, 45 MB L3 cache, 
144 CPU cores in total) and 1 TB memory (DDR4 2,400 MHz). The GPU tests for 
gimVI and Tangram were performed on a computer with Intel Xeon E5-2680v4 
CPU (2.4 GHz, 35 MB L3 cache, 14 CPU cores in total), 128 GB memory, and 
NVIDIA Tesla K80 GPU (12 GB of memory, a total of 2496 CUDA cores).

To assess the impact of various data attributes (including the number of 
cells in scRNA-seq data, the number of spots in spatial data, and the number 
of genes used for training) on the computing resources consumed by those 8 
integration methods capable of predicting the spatial distribution of undetected 
transcripts, we down-sampled the number of cells and the number of spots in 
dataset 40 and down-sampled the number of shared genes in dataset 6. For the 10 
integration methods that can perform cell type composition prediction of spots, 
we simulated a large dataset (10,000 spots, 20,000 cells) to evaluate the computer 
resources consumed by each method. Then, we down-sampled the number of 
cells, the number of spots, and the number of cell types in simulated datasets, 
and then evaluated the impacts of these data attributes on computing resources 
consumed.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
A summary of the individual accession numbers is given in Supplementary Table 1. 
The raw data are available from following study:
Dataset 1 (mouse gastrulation): seqFISH, https://content.cruk.cam.ac.uk/jmlab/
SpatialMouseAtlas2020/; 10X Chromium, ‘Sample 21’ in MouseGastrulationData 
within the R/Bioconductor data packageMouseGastrulationData.
Dataset 2 (mouse embryonic stem cell): seqFISH, https://zenodo.org/
record/3735329#.YY69HZMza3J; Microwell-Seq, ‘EmbryonicStemCells’ in ‘MCA_
BatchRemoved_Merge_dge.h5ad’ file in https://figshare.com/articles/dataset/
MCA_DGE_Data/5435866.
Dataset 3 (mouse hippocampus): seqFISH, https://ars.els-cdn.com/content/imag
e/1-s2.0-S0896627316307024-mmc6.xlsx; 10X Chromium, ‘HIPP_sc_Rep1_10X 
sample’ in GSE158450 in the GEO database.
Dataset 4 (mouse cortex): seqFISH+, https://github.com/CaiGroup/
seqFISH-PLUS, and the spatial coordinate of each spot was generated using 
‘stitchFieldCoordinates’ function in Giotto; Smart-seq, mouse primary visual 
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cortex (VISp) in the dataset in https://portal.brain-map.org/atlases-and-data/
rnaseq/mouse-v1-and-alm-smart-seq.
Dataset 5 (mouse olfactory bulb): seqFISH+, https://github.com/CaiGroup/
seqFISH-PLUS; Drop-seq, GSE148360 in the GEO database.
Dataset 6 (mouse hypothalamic preoptic region): MERFISH, the eighteenth female 
parent mouse (animal ID = 18) in https://datadryad.org/stash/dataset/doi:10.5061/
dryad.8t8s248; 10X Chromium, GSE113576 in the GEO database.
Dataset 7 (human osteosarcoma): MERFISH, the ‘B1_cell’ used in https://www.
pnas.org/doi/suppl/10.1073/pnas.1912459116/suppl_file/pnas.1912459116.sd12.
csv; 10X Chromium, BC22 in GSE152048 in the GEO database.
Dataset 8 (mouse primary motor cortex): MERFISH, ‘mouse1_slice162’ in 
https://caltech.box.com/shared/static/dzqt6ryytmjbgyai356s1z0phtnsbaol.gz; 
10X Chromium, https://data.nemoarchive.org/biccn/lab/zeng/transcriptome/
scell/10x_v3/mouse/processed/analysis/10X_cells_v3_AIBS/.
Dataset 9 (mouse VISP): MERFISH, https://github.com/spacetx-spacejam/data/; 
Smart-seq, mouse primary visual cortex (VISp) in https://portal.brain-map.org/
atlases-and-data/rnaseq/mouse-v1-and-alm-smart-seq.
Dataset 10 (mouse visual cortex): STARmap, ‘20180505_BY3_1kgenes’ in 
https://www.starmapresources.com/data; Smart-seq, mouse primary visual 
cortex (VISp) in https://portal.brain-map.org/atlases-and-data/rnaseq/
mouse-v1-and-alm-smart-seq.
Dataset 11 (mouse prefronatal cortex): STARmap, ‘20180419_BZ9_control’ in 
https://www.starmapresources.com/data; 10X Chromium, ‘PFC_sc_Rep2_10X’ in 
GSE158450 in the GEO database.
Dataset 12 (human middle temporal gyrus): ISS, https://github.com/
spacetx-spacejam/data; Smart-seq, https://portal.brain-map.org/atlases-and-data/
rnaseq/human-mtg-smart-seq.
Dataset 13 (mouse VISP): ISS, https://github.com/spacetx-spacejam/data; 
Smart-seq, mouse primary visual cortex (VISp) in the dataset in https://portal.
brain-map.org/atlases-and-data/rnaseq/mouse-v1-and-alm-smart-seq.
Dataset 14 (Drosophila embryo): FISH, https://github.com/rajewsky-lab/distmap; 
Drop-seq, GSE95025 in the Gene Expression Omnibus (GEO) database.
Dataset 15 (mouse somatosensory cortex): osmFISH, cortical regions in 
http://linnarssonlab.org/osmFISH/; Smart-seq, mouse somatosensory 
cortex (SSp) in https://portal.brain-map.org/atlases-and-data/rnaseq/
mouse-whole-cortex-and-hippocampus-smart-seq.
Dataset 16 (mouse VISP): BaristaSeq, https://github.com/spacetx-spacejam/data; 
Smart-seq, mouse primary visual cortex (VISp) in https://portal.brain-map.org/
atlases-and-data/rnaseq/mouse-v1-and-alm-smart-seq.
Dataset 17 (mouse VISP): ExSeq, https://github.com/spacetx-spacejam/data; 
Smart-seq, mouse primary visual cortex (VISp) in https://portal.brain-map.org/
atlases-and-data/rnaseq/mouse-v1-and-alm-smart-seq.
Dataset 18 (mouse hindlimb muscle): 10X Visium, Vis5A in GSE161318 in the 
GEO database; 10X Chromium, D2_Ev3 in GSE159500 in the GEO database.
Dataset 19 (mouse hindlimb muscle): 10X Visium, Vis9A in GSE161318 in the 
GEO database; 10X Chromium, D7_Ev3 in GSE159500 in the GEO database.
Dataset 20 (human breast cancer): 10X Visium, ‘CID3586’ in https://zenodo.org/
record/4739739#.YY6N_pMzaWC; 10X Chromium, ‘CID3586’ in GSE176078 in 
the GEO database.
Dataset 21 (human breast cancer): 10X Visium, ‘1160920F’ in https://zenodo.org/
record/4739739#.YY6N_pMzaWC; 10X Chromium, ‘CID3586’ in GSE176078 in 
the GEO database.
Dataset 22 (human breast cancer): 10X Visium, ‘CID4290’ in https://zenodo.org/
record/4739739#.YY6N_pMzaWC; 10X Chromium, ‘CID3586’ in GSE176078 in 
the GEO database.
Dataset 23 (human breast cancer): 10X Visium, ‘CID4465’ in https://zenodo.org/
record/4739739#.YY6N_pMzaWC; 10X Chromium, ‘CID3586’ in GSE176078 in 
the GEO database.
Dataset 24 (human breast cancer): 10X Visium, ‘CID44971’ https://zenodo.org/
record/4739739#.YY6N_pMzaWC; 10X Chromium, ‘CID3586’ in GSE176078 in 
the GEO database.
Dataset 25 (human breast cancer): 10X Visium, ‘CID4535’ in https://zenodo.org/
record/4739739#.YY6N_pMzaWC; 10X Chromium, ‘CID3586’ in GSE176078 in 
the GEO database.
Dataset 26 (zebrafish melanoma): 10X Visium, ‘Visium-A’ in GSE159709 in  
the GEO database; 10X Chromium, ‘SingleCell-E’ in GSE159709 in the GEO 
database.
Dataset 27 (mouse embryo): 10X Visium, ‘Visium-A1’ in GSE160137 in the GEO 
database; 10X Chromium, ‘Pax2-GFP_SC-2’ in GSE143806 in the GEO database.
Dataset 28 (human prostate): 10X Visium, ‘D25’ in GSE159697 in the GEO 
database; 10X Chromium, ‘V8’ in GSE142489 in the GEO database.
Dataset 29 (mouse kidney): 10X Visium, Sham Model in GSE171406 in the GEO 
database; 10X Chromium, wild-type sham mouse in GSE171639 in the GEO 
database.
Dataset 30 (mouse kidney): 10X Visium, ischemia reperfusion injury model in 
GSE171406 in the GEO database; 10X Chromium, wild-type ischemic acute kidney 
injury mouse in GSE171639 in the GEO database.
Dataset 31 (mouse brain): 10X Visium, ‘section1’ in GSE153424 in the GEO 
database; 10X Chromium, ‘brain1_cx’ in GSE153424 in the GEO database.

Dataset 32 (mouse prefrontal cortex): 10X Visium, ‘Visium_10X’ in GSE158450 in 
the GEO database; 10X Chromium, ‘PFC_sc_Rep1_10X’ in GSE158450 in the GEO 
database.
Dataset 33 (mouse hippocampus): 10X Visium, ‘Visium_10X’ in GSE158450 in the 
GEO database; 10X Chromium, ‘HIPP_sc_Rep1_10X’ in GSE158450 in the GEO 
database.
Dataset 34 (mouse kidney): 10X Visium, GSE154107 in the GEO database; 10X 
Chromium, sample ‘(LPS36hr) scRNA-seq’ in GSE151658 in the GEO database.
Dataset 35 (human prostate): 10X Visium, ‘ETOH’ in GSE159697 in the GEO 
database; 10X Chromium, ‘V8’ in GSE142489 in the GEO database.
Dataset 36 (mouse lymph node): 10X Visium, ‘PBS’ samples of Tissue 1 in https://
github.com/romain-lopez/DestVI-reproducibility; 10X Chromium, ‘PBS’ samples 
in https://github.com/romain-lopez/DestVI-reproducibility.
Dataset 37 (mouse MCA205 tumor): 10X Visium, Tumor A1 of Tissue 1 in https://
github.com/romain-lopez/DestVI-reproducibility; 10X Chromium, https://github.
com/romain-lopez/DestVI-reproducibility.
Dataset 38 (mouse primary motor cortex): 10X Visium, https://storage.googleapis.
com/tommaso-brain-data/tangram_demo/Allen-Visium_Allen1_cell_count.h5ad; 
10X Chromium, ‘batch 9’ in ‘mop_sn_tutorial.h5ad’ file from https://console.cloud.
google.com/storage/browser/tommaso-brain-data.
Dataset 39 (mouse primary motor cortex): Slide-seq, https://storage.googleapis.
com/tommaso-brain-data/tangram_demo/slideseq_MOp_1217.h5ad.gz; 10X 
Chromium, ‘batch 9’ in ‘mop_sn_tutorial.h5ad’ file from https://console.cloud.
google.com/storage/browser/tommaso-brain-data.
Dataset 40 (mouse cerebellum): Slide-seqV2, SCP948 in https://singlecell.
broadinstitute.org/single_cell/; 10X Chromium, sample M003 of study SCP795 in 
https://singlecell.broadinstitute.org/single_cell/.
Dataset 41 (mouse hippocampus): Slide-seqV2, ‘Puck_200115_08’ 
in https://singlecell.broadinstitute.org/single_cell/study/SCP815/
highly-sensitive-spatial-transcriptomics-at-near-cellular-resolution-with-slide-seq
v2#study-download; Drop-seq, we randomly sampled 10,000 cells from 
‘GSE116470_F_GRCm38.81.P60Hippocampus.raw.dge.txt.gz’ file in GSE116470 in 
the GEO database.
Dataset 42 (human squamous carcinoma): ST, GSM4284322 in the GEO database; 
10X Chromium, ‘GSE144236_cSCC_counts.txt.gz’ in GSE144236 in the GEO 
database.
Dataset 43 (mouse hippocampus): ST, wild-type replicate 1 in https://data.
mendeley.com/datasets/6s959w2zyr/1; 10X Chromium, GSE116470 in the GEO 
database.
Dataset 44 (mouse olfactory bulb): HDST, replicate1 in GSE130682 in the GEO 
database; 10X Chromium, WT1 samples used from GSE121891 in the GEO 
database.
Dataset 45 (mouse liver): Seq-scope, https://deepblue.lib.umich.edu/data/
downloads/gx41mj14n; Smart-seq2, liver sample in GSE109774 in the GEO 
database.
We also provide an open source website for users to download all the above 
datasets: https://drive.google.com/drive/folders/1pHmE9cg_tMcouV1LFJFtbyBJN
p7oQo9J?usp=sharing.
Source data for figures and Extended Data Figures are provided with this paper. 
Source data are provided with this paper.

Code availability
We uploaded the code and scripts used for the comparative analysis and figure 
plotting to GitHub: https://github.com/QuKunLab/SpatialBenchmarking. The 
package can also be used to analyze user’s own datasets.
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Extended Data Fig. 1 | Comparing the accuracy of eight integration methods in predicting the spatial distribution of RNA transcripts. a, The spatial 
distribution of COL17A1 in dataset 42 (ST; 10X Chromium; human squamous carcinoma), including the ground truth and prediction results from the 
integration methods. PCC: Pearson Correlation Coefficient between the expression vector of a transcript in the ground truth and that of the predicted 
result. b, Bar plots of PCC, SSIM, RMSE, and JS of each integration method in predicting the spatial distribution of transcripts of dataset 42. SSIM: 
Structural Similarity Index; RMSE: Root Mean Square Error; JS: Jensen-Shannon divergence. Data are presented as mean values ± 95% confidence 
intervals; n = 948 predicted genes. c, The violin plot of AS (accuracy score, aggregated from PCC, SSIM, RMSE, and JS; see Methods) of the eight 
integration methods for transcripts in dataset 42. Center line, median; box limits, upper and lower quartiles; whiskers, 1.5× interquartile range; n = 4 
benchmark metrics.
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Extended Data Fig. 2 | The boxplots of PCC, SSIM, RMSE, JS values of each integration method in predicting the spatial distribution of RNA transcripts 
of 45 paired spatial transcriptomics and scRNA-seq datasets. The boxplots of PCC, SSIM, RMSE, JS values of each integration method in predicting the 
spatial distribution of RNA transcripts of 45 paired spatial transcriptomics and scRNA-seq datasets. Center line, median; box limits, upper and lower 
quartiles; whiskers, 0.5× interquartile range, the number of genes for each dataset is shown at the top of each panel.
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Extended Data Fig. 3 | PCC, SSIM, RMSE, JS and AS of spatial distribution of RNA transcripts predicted by each integration method for the 45 paired 
spatial transcriptomics and scRNA-seq datasets. a-g, Boxplots of AS (accuracy score, aggregated from PCC, SSIM, RMSE, and JS; see Methods) of the 
integration methods for transcripts in the 17 image-based datasets (a), 28 seq-based datasets (b), 32 simulated datasets (c), 21 10X visium datasets 
(d), 5 seqFISH datasets (e), 4 MERFISH datasets (f), 3 Slide-seq datasets (g). Center line, median; box limits, upper and lower quartiles; whiskers, 1.5× 
interquartile range. Grey dots indicate the prediction result is not available, as the tool made an error when predictions.
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Extended Data Fig. 4 | The PCC values of each integration method when processing the raw expression matrices and the normalized expression 
matrices. The PCC values of each integration method when processing the raw expression matrices and the normalized expression matrices. R-R: raw 
expression matrix of spatial data and raw expression matrix of scRNA-seq data; N-R: normalized expression matrix of spatial data and raw expression 
matrix of scRNA-seq data; R-N: raw expression matrix of spatial data and normalized expression matrix of scRNA-seq data; N-N: normalized expression 
matrix of spatial data and normalized expression matrix of scRNA-seq data; n = 43 independent datasets. Dataset6 and Dataset8 are excluded, as the 
normalized expression matrix of spatial data has been normalized.
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Extended Data Fig. 5 | Impact of normalization on the accuracy of eight integration methods that can predict the spatial distribution of RNA transcripts. 
a, b, Boxplots of the PCC values of the eight integration methods for 28 seq-based datasets (a) or 15 image-based datasets (b) when using the four 
schemes of input expression matrices (that is R-R, R-N, N-R, and N-N, see their definition in the legend of Extended Data Fig. 4). For the genes predicted 
by each method, we removed outliers using 10%-90% confidence interval. Statistical significance was analyzed with two-sided paired t-test, *P < 0.05, 
**P < 0.01, ***P < 0.001 and ****P < 0.0001. Center line, median; box limits, upper and lower quartiles; whiskers, 1.5× interquartile range. c-f, Boxplots of 
the AS values of the eight integration methods for all the 45 paired datasets when using the four schemes of input expression matrices. For the genes 
predicted by each method, we removed outliers using 10%-90% confidence interval. Center line, median; box limits, upper and lower quartiles; whiskers, 
1.5× interquartile range; n = 43 independent datasets.
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Extended Data Fig. 6 | Correlation between the four metrics (PCC, SSIM, RMSE, and JS) and the sparsity of each examined spatial expression matrix. 
Correlation between the four metrics (PCC, SSIM, RMSE, and JS) and the sparsity of each examined spatial expression matrix. For all the eight integration 
methods that can predict the spatial distribution of transcripts, the JS values are linearly positively correlated with the sparsity of expression matrices of 
the spatial transcriptomics data (R2 ≥ 0.50).
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Comparing the accuracy of the eight integration methods for sparse expression matrices down-sampled from the original 
datasets using Scuttle. a, Spatial distribution of Cplx1 expression in dataset 4 (seqFISH+; Smart-seq; mouse cortex), predicted from the original data and 
down-sampled data (down-sampling rate = 0.8). b, PCC of the spatial distribution of transcripts predicted from the original data and down-sampled data 
from dataset 4. The PCC values of the red-colored transcripts are greater than 0.5 for both the original and the down-sampled data. The proportion of the 
red-colored transcripts in all transcripts was defined as the ‘robustness score’ (RS). c, RS values of the eight integration methods when processing sparse 
expression matrices down-sampled from dataset 4 at different down-sampling rates. d, RS values of the eight integration methods when processing the 
sparse expression matrices of the down-sampled datasets. The original datasets (used to generate the down-sampled datasets) capture >1000 genes 
from >100 spots, and the sparsity of the expression matrices is <0.7. Data are presented as mean values ± 95% confidence intervals; n = 19 independent 
datasets.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Comparing the performance of the twelve integration methods in cell type deconvolution. a, PCC, SSIM, RMSE, and JS values 
for the cell type composition of the spots simulated from dataset 10, generated by twelve integration methods. Center line, median; box limits, upper and 
lower quartiles; whiskers, 1.5× interquartile range; n = 12 predicted cell types. b, A seqFISH+ slide of dataset 4 (seqFISH+; Smart-seq; mouse cortex) 
with cells annotated by cell type. Each grid represents a simulated spot containing 1~18 cells. c, The proportion of L5&6 excitatory neurons in the spots 
simulated from dataset 4, including the ground truth and the predicted results of twelve integration methods. d, PCC, SSIM, RMSE, and JS values for the 
cell type composition of the spots simulated from dataset 4, generated by twelve integration methods. Center line, median; box limits, upper and lower 
quartiles; whiskers, 1.5× interquartile range; n = 8 predicted cell types. e, PCC, SSIM, RMSE, and JS values for the cell type composition of the spots in all 
the simulated datasets (n = 32), generated by ten integration methods. SpaOTsc and novoSpaRc are excluded, as they require spatial location information 
for each spot, which is not available in the simulated datasets. Data are presented as mean values ± 95% confidence intervals; n = 32 independent 
datasets.
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Extended Data Fig. 9 | Computer resources consumed by each integration method. a-c, The impact of the number of cells in scRNA-seq data (a), the 
number of spots in spatial data (b), and the number of genes used for training (c), on computational resources consumed by the integration methods that 
can predict the spatial distribution of undetected transcripts. d, The computer time and memory spent by the integration methods that can deconvolute 
cell types of histological spots, when processing a simulated dataset which contains 20000 spots in its spatial transcriptomics data and 10000 cells in its 
scRNA-seq data. e-g, The impacts of the number of cells in scRNA-seq data (e), the number of spots in spatial data (f), and the number of the cell types 
(g) on computational resources consumed by the integration methods that can deconvolute cell types of histological spots.
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